

Journal of Artificial Intelligence and Information, Volume 2, 2025

https://www.woodyinternational.com/

©The Author(s) 2024

This is an Open Access article distributed under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/BY/4.0/ which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Design and Implementation of Web Crawler

Based on C++

Zijin Song

School of Computer and Software, Chengdu Jincheng University, Chengdu 611731, Sichuan, China

Abstract: With the booming development and continuous progress of the design and artificial intelligence industries, the

demand for high-quality and diverse images is showing an explosive growth trend. This trend is not only reflected in

creative design and product development, but also deeply rooted in multiple cutting-edge fields such as machine learning

and computer vision. However, in the face of massive image resources, manually accessing websites and downloading
images one by one appears time-consuming and laborious, greatly limiting work efficiency and the scale of data acquisition.

Therefore, developing efficient and automated tools to collect images has become a top priority. In this context, this article

elaborates on the design and implementation of a web crawler system based on the C++programming language. This web
crawling system focuses on processing websites that use the HTTP protocol, and can efficiently penetrate webpage

structures, accurately locate and extract image resources. Users only need to provide the URL of the target website as a

starting point, and the crawler will automatically start working by parsing the webpage content, identifying and
downloading all available image files. This process not only greatly reduces the manual burden, but also significantly

improves the speed and breadth of image collection, providing a solid foundation for subsequent image processing, analysis,

and model training. In addition, the design of the crawler system considers flexibility and scalability, making it easy to

adjust and optimize according to specific needs to adapt to the constantly changing network environment and image
acquisition requirements.

Keywords: Crawler; C++; Http; Picture.

1. INTRODUCTION

In modern society, the design industry is developing at an unprecedented speed, and in this process, designers

often need a large number of images as creative materials or inspiration references[1]. Similarly, in the field of

artificial intelligence, massive amounts of image data are also indispensable for training various deep learning

models. However, in the huge ocean of Internet, how to efficiently collect and download these image resources has

become a major problem for many professionals[2]. In order to solve this problem, web crawling technology has

emerged. A web crawler is a program that automatically captures network information based on preset rules. It can

simulate human browsing behavior, quickly traverse web pages, and extract the required content. In this specific

web crawling project, we mainly focus on crawling image resources from websites that use the HTTP protocol.

The core of the project is to analyze the HTML code of the target website and obtain the URL of the image by

accurately locating the src attribute of the image element. Subsequently, the crawler will download images in

batches based on these URLs, achieving an automated and efficient image collection process. This method not

only greatly improves the efficiency of image collection, but also reduces the burden of manual operations,

providing strong data support for the design industry and the field of artificial intelligence.

Figure 1: Grasping process

The application of deep learning in web crawling is becoming increasingly widespread, injecting new vitality into

this traditional technology field. Web crawlers, as automated tools for collecting network information, have

always been a focus of developers' attention on their efficiency and accuracy[3][4][5]. The introduction of deep

learning provides a new solution for improving the performance of web crawlers. Deep learning models, such as

Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN), have demonstrated powerful

capabilities in image recognition and text processing[6][7]. In web crawlers, these models can be used to more

accurately parse webpage content, identify useful information and images. For example, by training deep learning

models to recognize specific elements in web pages, such as images, links, or text blocks, crawlers can more

accurately capture target data and avoid downloading irrelevant or redundant information[8]. In addition, deep

8

Journal of Artificial Intelligence and Information, Volume 2, 2025

https://www.woodyinternational.com/

©The Author(s) 2024

This is an Open Access article distributed under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/BY/4.0/ which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

learning can also help web crawlers better handle complex web page structures[9]. Traditional web crawlers often

rely on fixed parsing rules, making it difficult to cope with frequent changes in webpage structure. Deep learning

models can automatically extract features and patterns of web pages by learning from a large number of web page

samples, thus adapting more flexibly to different web page structures[10]. Overall, the application of deep learning

in web crawlers not only improves the efficiency and accuracy of data collection, but also enhances their ability to

handle complex web page structures[11][12]. With the continuous development of deep learning technology, we

have reason to believe that future web crawlers will become more intelligent and efficient, providing richer

network information resources for various industries[13].

2. OBTAIN AND ANALYZE WEBSITE ADDRESSES

When the program starts running, use the CreateDirectory () function to create a folder for storing crawled images.

Next, the program will remind the user to enter the URL to be crawled, and then store the URL entered by the user

in a string type variable for future use.

Next, load the URL into a char type array and use the strstr() function to check if the input URL is an HTTP

protocol URL. If the input URL is confirmed to be an HTTP protocol URL, then the next step is to use the sscanf()

function to find the first "/" after "http://". The sscanf() function can find the specified substring in a string and load

the front and back parts of the found substring into different variables. By searching for the first "/" after "http://",

we can obtain the content of the two parts before and after it. The first part is the host name, and the last part is the

resource path.

3. CONNECT TO THE SERVER

Next, we need to connect to the server and send a get request.

We first initialize the socket library and create a socket. Then use gethostbyname() to resolve the host IP and

receive its return value using pointer P.

Then declare a socketaddr_in variable, which is a structure encapsulated by the system. The member variable

sin_family represents which address family to use, sin_port is used to store port numbers, and sin_dedr stores

information about IP addresses. We set its sin_family to AF-INET, indicating the use of TCP/IP protocol; Set its

sin_port to htons (80), indicating the use of the default HTTP port number of 80. Then pass the h-addr in pointer p

to the sinaddr of the sokaddr_in variable. Finally, the server is connected through the connect() function. The

connect() function requests the connection through a socket and the socketaddr_in variable as parameters. If

successful, it returns 0, and if the connection fails, it returns an error code.

If the connection is successful, proceed to the next step - send a get request. Here, we need to declare an array of

char type to store the get request, and use the sprintf() function to load the requested content into the array; The

following content needs to be loaded: "GET% s HTTP/1.1 \ r \ nHost:% s \ r \ nConnection: Close \ r \ n \ r \ n". The

first '% s' here is the resource path previously analyzed, and the second is the hostname.

After loading, it needs to be sent through the system call function send(). This function can only be used when the

program is in a linked state, so it is placed after connect(), and then sends a get request to the server as a parameter

by adding a socket, a char type array containing a get request, and the size of the array calculated by the strlen()

function.

4. RETRIEVE AND PARSE HTML

Before crawling the target website, the first step is to determine the collection target, clarify the location

information and logical structure of the collection fields [14]. Therefore, after sending the get request, we need to

retrieve the HTML and first declare an array and a string to store the HTML. Next, the data returned from the

server is received through the recv() function, and a while loop with the return value of the recv() function as the

judgment condition is used to determine whether there is still data sent. In each loop, the data in the array is loaded

into a string. If the data transmission ends, the loop will terminate, and ultimately we will obtain the complete

computer system network and telecommunications HTML of the webpage.

9

Journal of Artificial Intelligence and Information, Volume 2, 2025

https://www.woodyinternational.com/

©The Author(s) 2024

This is an Open Access article distributed under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/BY/4.0/ which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

After obtaining the HTML of the webpage, we need to find the src that represents the image and download the

image based on the URL provided by src. Therefore, we need a regular expression to make a judgment and find the

src that meets the criteria. The content of the regular expression is as follows: "src=\" (. *? \ \. jpg) \ ". In addition,

we also need to use a small variable mat to obtain the part that matches the expression.

We need the regex_dearch() function to perform search matching, setting the start and end as the beginning and

end of the HTML, and continuously searching through a while loop before putting it into the MAT. In the loop, we

will convert the found src into a string variable through mat [1]. First and mat [1]. Second, and pass it as a

parameter to the function responsible for downloading.

After the first function call responsible for downloading, we set mat [0]. second as the start, which means setting

the beginning of the second part that matches the expression found as the start. The next continuous loop will pass

all src that meet the table inversion criteria into the download function for downloading. After the download is

complete, setting mat [0]. second as the starting step will narrow the search range of each loop until there are no src

that meet the criteria in the search range. At this point, all images will be downloaded. We crawled all the image

information of the webpage.

5. DOWNLOAD

After obtaining the src, pass it to the function responsible for downloading, but some src cannot be directly

downloaded. We need to complete the src as a URL before proceeding with further operations. The URL needs to

have a protocol name and a host name, but some SRCs are missing either or both of these parts.

Figure 2: Several situations that need to be completed

In addition, when we obtain the src, we will also obtain the src with data original at the end, for example:

"src="//www.yesky. com/TLimages2009/yesky/images/delaypic. gif "data original=" d-pic-image. yesky.

com/105 x140/uploadImage/2019/007/05/R09WX0PGB9N_H.jpg ". In this case, we need to take the part after

data original=as src to download normally, otherwise the download will fail. If we find data original in the

obtained src through the strstr() function, we use the sscanf() function to obtain the part after data original=for

further processing.

Some of the SRCs we encountered next have the following situations: first, there is no "http://" or host name;

second, there is no "http://" but a host name; and third, there is a host name without "http://" but with the following

"//". We will use the strstr() function to identify these situations and complete src accordingly based on the

judgment results, so that it becomes a URL that can download images normally.

10

Journal of Artificial Intelligence and Information, Volume 2, 2025

https://www.woodyinternational.com/

©The Author(s) 2024

This is an Open Access article distributed under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/BY/4.0/ which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Subsequently, we will use the URLDownToFile() function to download images, but this function requires the

storage path and name of the image, and when the downloaded images have the same name, they will overlap with

each other. Therefore, we need to use image storage names that are as unique as possible. I am using the substr()

function to extract the image name from src to solve this problem. Firstly, I use the find_1ast_of() function to

determine the location of the last "/", and then pass the location to the substr() function. This function will

automatically extract the content after the location and receive the extracted part as the save name of the image

through a string type variable. Finally, adding the save name and the path of the previously created folder together

becomes the final save path for the image.

The required URL and save path in the URLDownToFile() function require wide character strings, which is not the

type of URL and save path we currently use. Therefore, we need to use the function MultiByteToWideChar() to

convert these two strings. This function requires the size of the buffer for converting characters as a parameter, but

we do not know this value beforehand. Therefore, we need to first set the second to last parameter of the function to

empty and the first to last parameter to 0, so that the function's function will return the required size of the buffer

for converting characters. Afterwards, we will call the function again, this time the second to last variable of the

function will be set to a wide character variable, and the first to last variable will be the size of the buffer obtained

previously. Only we will use this method to convert both the URL and storage path into wide character strings.

After the above preparations are completed, we will start using the URLDownToFile() function for downloading.

This function has five parameters, the first of which is the interface address of the ActiveX component, which we

do not need here. We will set it to empty; The second parameter is the URL, and the third parameter is the storage

path; The fourth one is a reserved value, set to 0; The fifth one is the address of the ibindstatuscallback interface,

which can be set to empty here. Afterwards, the function will download the image to the specified path based on

the given URL and save path. The return value of the function will determine whether the download was successful

and return a prompt. By parsing the while loop in HTML and continuously passing the obtained src into the

download function for processing and downloading, we can obtain all the images of the webpage.

6. DEEP CRAWLING

The application of neural networks in capturing images on web pages is a new field that has emerged in recent

years with the development of artificial intelligence technology[15]. Traditional web image capture methods often

rely on fixed rules or templates, making it difficult to cope with complex and ever-changing web page structures

and content. Neural networks, especially deep neural networks, provide new solutions to this problem with their

powerful feature extraction and pattern recognition capabilities. In web image capture, neural networks can be

used to analyze the HTML code and CSS styles of web pages, identifying the positions and attributes of image

elements[16]. By training a large number of web page samples, neural networks can learn the common features

and distribution patterns of image elements in web pages, thereby more accurately locating and capturing images.

In addition, neural networks can also process the content of the image itself for further screening and classification.

For example, convolutional neural networks (CNNs) can be used to extract and classify features from captured

images, identifying information such as objects, scenes, or text in the images, thereby helping users find the

desired image resources more quickly[17][18]. Overall, the application of neural networks in web image capture

not only improves the accuracy and efficiency of capture, but also provides users with a more intelligent and

personalized image search experience. With the continuous development of neural network technology, we have

reason to believe that future web image capture will become more intelligent, efficient, and accurate, providing

richer image information resources for various industries and promoting the widespread application and

development of artificial intelligence technology[19][20].

The above process is the process of crawling all images within a webpage, but only the webpage where the user

inputs the URL can be crawled. When we have a larger demand for images, we hope that the crawler can also crawl

images from other related webpages. Therefore, based on this requirement, we can declare a queue and insert a step

after obtaining HTML and before parsing SRC to achieve deep crawling of other related web pages.

After obtaining the HTML, we use regular expressions in the same way as searching for src to find the 'ref' in the

HTML. The expression content can be in two situations: 'ref=\' (. *? \ \. html) \ "" and 'ref=\' (. *? \ \. shtml) \ ".

These are all web pages related to the input URL, but some of them also lack protocol names or host names like src.

Here, we still use the method of processing src to complete the missing parts, and then we store the completed URL

in a queue. After the content crawling on a page is completed, the program will automatically retrieve the URL

from the queue and then perform the above cycle, continuously crawling images.

11

Journal of Artificial Intelligence and Information, Volume 2, 2025

https://www.woodyinternational.com/

©The Author(s) 2024

This is an Open Access article distributed under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/BY/4.0/ which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

When there is a high demand for images, this method allows you to crawl down all relevant webpage images with

only one URL input, and obtain a large number of images in a short period of time.

7. CONCLUSION

Crawlers can efficiently extract valuable information, reduce technical costs, and improve business efficiency. [3]

This article elaborates on the design ideas and implementation process of a web crawler based on C++for the

HTTP protocol. The program has a clear structure and clear ideas, making it suitable for beginners who are new to

web crawling and C++network programming to learn.

At the same time, the project has a small amount of code and low development costs; It also has a large renovation

space. When encountering situations that were not considered in this project, the scope of application of the project

can be increased by adding situations that did not appear in the original program.

REFERENCES

[1] Chen, H., Shen, Z., Wang, Y., & Xu, J. (2024). Threat Detection Driven by Artificial Intelligence: Enhancing

Cybersecurity with Machine Learning Algorithms.

[2] Xu, Y., Gao, W., Wang, Y., Shan , X., & Lin, Y.-S. (2024). Enhancing user experience and trust in advanced

LLM-based conversational agents. Computing and Artificial Intelligence, 2(2), 1467.

https://doi.org/10.59400/cai.v2i2.1467

[3] Teller, & Virginia. (2000). Speech and language processing: an introduction to natural language processing,

computational linguistics, and speech recognition daniel jurafsky and james h. martin (university of colorado,

boulder) upper saddle river, nj: prentice hall (prentice hall ser. Computational Linguistics, 26(4), 638-641.

[4] He, C., Yu, B., Liu, M., Guo, L., Tian, L., & Huang, J. (2024). Utilizing Large Language Models to Illustrate

Constraints for Construction Planning. Buildings, 14(8), 2511.

https://doi.org/https://doi.org/10.3390/buildings14082511

[5] Tian, Q., Wang, Z., Cui, X. Improved Unet brain tumor image segmentation based on GSConv module and

ECA attention mechanism. arXiv preprint arXiv:2409.13626.

[6] Ren, Z. (2024). Semantic Transformation Network: Improving Dialogue Summarization Through

Contrastive Learning and Attention. Journal of Theory and Practice in Engineering and Technology, 1(3), 1

–8. Retrieved from https://woodyinternational.com/index.php/jtpet/article/view/59

[7] Wang, Z., Chu, Z. C., Chen, M., Zhang, Y., & Yang, R. (2024). An Asynchronous LLM Architecture for

Event Stream Analysis with Cameras. Social Science Journal for Advanced Research, 4(5), 10-17.

[8] Tennant, & Harry. (1981). Natural language processing: an introduction to an emerging technology.

[9] Zheng, H., Wang, B., Xiao, M., Qin, H., Wu, Z., & Tan, L. (2024). Adaptive Friction in Deep Learning:

Enhancing Optimizers with Sigmoid and Tanh Function. arXiv preprint arXiv:2408.11839.

[10] Ren, Z. (2024). Adaptive Multi-Scale Fusion for Infrared and Visible Object Detection in YOLOv8. Journal

of Theory and Practice of Engineering Science, 4(09), 28–34. https://doi.org/10.53469/jtpes.2024.04(09).04

[11] Shen, Z., Ma, Y., & Shen, J. (2024). A Dynamic Resource Allocation Strategy for Cloud-Native Applications

Leveraging Markov Properties. International Journal of Advance in Applied Science Research, 3, 99-107.

[12] Li, L., Gan, Y., Bi, S., & Fu, H. (2024). Substantive or strategic? Unveiling the green innovation effects of

pilot policy promoting the integration of technology and finance. International Review of Financial Analysis,

103781.

[13] Xu Y, Shan X, Guo M, Gao W, Lin Y-S. Design and Application of Experience Management Tools from the

Perspective of Customer Perceived Value: A Study on the Electric Vehicle Market. World Electric Vehicle

Journal. 2024; 15(8):378. https://doi.org/10.3390/wevj15080378

[14] Xie, Y., Li, Z., Yin, Y., Wei, Z., Xu, G., & Luo, Y. (2024). Advancing Legal Citation Text Classification A

Conv1D-Based Approach for Multi-Class Classification. Journal of Theory and Practice of Engineering

Science, 4(02), 15–22. https://doi.org/10.53469/jtpes.2024.04(02).03

[15] Bethard, S. , Jurafsky, D. , & Martin, J. H. . (2008). Instructor's Solution Manual for Speech and Language

Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech

Recognition (Second Edition).

[16] Jurafsky, D. , & Martin, J. H. . (2007). Speech and language processing: an introduction to speech recognition,

computational linguistics and natural language processing. Prentice Hall PTR.

12

Journal of Artificial Intelligence and Information, Volume 2, 2025

https://www.woodyinternational.com/

©The Author(s) 2024

This is an Open Access article distributed under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/BY/4.0/ which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

[17] Yao, J. (2024). The Impact of Large Interest Rate Differentials between China and the US bn the Role of

Chinese Monetary Policy -- Based on Data Model Analysis. Frontiers in Economics and Management, 5(8),

243-251.

[18] Yao, J. (2024). The Impact of Large Interest Rate Differentials between China and the US bn the Role of

Chinese Monetary Policy -- Based on Data Model Analysis. Frontiers in Economics and Management, 5(8),

243-251.

[19] Wang, Z., Zhu, Y., Chen, M., Liu, M., & Qin, W. (2024). Llm connection graphs for global feature extraction

in point cloud analysis. Applied Science and Biotechnology Journal for Advanced Research, 3(4), 10-16.

[20] Nadkarni, P. M. , Ohno-Machado, L. , & Chapman, W. W. . (2011). Natural language processing: an

introduction. Journal of the American Medical Informatics Association Jamia, 18(5), 544.

13

