
                     
Journal of Artificial Intelligence and Information, Volume

 

2, 2025

 

https://www.woodyinternational.com/

© The Author(s) 2025 

 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/BY/4.0/  which permits unrestricted 

use, distribution, and reproduction in any medium, provided the original work is properly cited. 

  
  

  

  

 
  

Autonomous UAV Navigation in Unfamiliar 

Indoor Environments Using Deep 

Reinforcement Learning 
  

James T. Morgan1, Olivia K. Sanders1, Ethan L. Chen2*, Sophia R. Bennett2, Ryan D. Foster3 
 

1Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093, USA 
2School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA 

3Department of Computer Science, Stanford University, Stanford, CA 94305, USA 

*Correspondence Author 

 

Abstract: Efficient and collision-free navigation in GPS-denied indoor environments remains a fundamental challenge in 

the development of intelligent Unmanned Aerial Vehicles (UAVs). This study introduces DRAL-UAV, a Deep 

Reinforcement Adaptive Learning framework tailored for path planning in partially observable environments. The 

proposed model features a hierarchical policy network that integrates a visual encoder, a recurrent memory module, and an 

adaptive reward adjustment mechanism. Training and evaluation are conducted using the AirSim 3D simulation platform, 

incorporating complex conditions such as dynamic obstacles and narrow corridors. Experimental results demonstrate that 

DRAL-UAV achieves an average navigation success rate of 92.6% over 5,000 trials across 100 scenarios, outperforming 

traditional A* and DDPG methods. Furthermore, the model reduces the average path length by 28.4% and maintains a low 

failure rate of 5% in challenging narrow corridor scenarios (corridor width ratio = 1.2). The finding highlight 

DRAL-UAV’s robust decision-making ability, improved generalization in unstructured environments and high applicability 

in real-world UAV tasks, including search and rescue, warehouse automation and industrial inspections. 

 

Keywords: UAV navigation; Deep reinforcement learning; Adaptive path planning; Indoor autonomous system; AirSim 

simulation.  

 

1. INTRODUCTION 
 

In recent years, UAV (Unmanned Aerial Vehicle) technology has become a key force driving transformation 

across various industries [1]. Its application scope continues to expand, with increasing depth. In the field of 

civilian logistics and distribution, UAVs are reshaping operational models—from optimizing last-mile delivery to 

transporting goods inside warehouses [2]. According to data from international logistics research institutions, in 

certain pilot areas where UAV delivery has been introduced by leading global logistics companies, delivery 

efficiency has increased by 35%, while delivery costs have been reduced by 25%. This improvement is mainly due 

to the ability of UAVs to accurately plan low-altitude flight paths, avoid traffic congestion, and achieve fast and 

efficient parcel delivery [3]. In search and rescue scenarios, UAVs play an essential role [4,5]. After natural 

disasters such as earthquakes or floods, the affected areas are often complex and dangerous, making it difficult for 

traditional rescue methods to quickly reach the core zones [6]. UAVs equipped with high-resolution cameras, 

thermal imaging sensors, and life detectors can rapidly conduct large-scale area searches. Statistical studies show 

that in past disaster relief efforts, the involvement of UAVs reduced the average time needed to locate survivors by 

42%, significantly improving the overall success rate of rescue missions [7]. In warehouse management, modern 

intelligent warehouses have a strong demand for efficient inventory checking and accurate stock control [8]. Some 

advanced warehouses now use UAVs to perform inventory tasks. Through seamless integration with warehouse 

management systems, UAVs can quickly identify the location, quantity and condition of goods, improving 

inventory checking efficiency by 55% and effectively reducing both the time cost and human errors associated 

with manual checks. 

 

However, indoor environments present unprecedented challenges for autonomous UAV navigation. The spatial 

layout indoors is often far more complex than expected [9]. For example, in large-scale e-commerce warehouses, 

the interior includes tall shelves, scattered goods piles, various types of conveyors, and temporary work zones [10]. 

Spatial mapping data indicate that an average of 22 different types of obstacles are distributed within every 100 

square meters of warehouse space. These obstacles are arranged irregularly and passage widths vary, placing high 

demands on UAV path planning [11]. Another major challenge is the complete unavailability of GPS signals 

indoors. In open outdoor environments, GPS can provide meter-level or even sub-meter-level positioning accuracy 

through satellite signals, offering reliable coordinate data for UAV navigation [12]. However, in indoor 
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environments, satellite signals are blocked or interfered with by building structures, resulting in complete failure of 

GPS-based positioning. This makes traditional GPS-dependent navigation methods unusable indoors [13]. In 

addition, indoor obstacles are often dynamic. In large shopping malls, for instance, during operating hours, there 

are many moving obstacles such as people and mobile vending carts, whose movement paths are unpredictable 

[14]. Using advanced indoor positioning and trajectory tracking technologies, it has been observed that during 

peak hours, the positions of people in a mall can change more than 50 times per minute. Under such rapid changes, 

traditional map-based navigation strategies struggle to update the map in real time, resulting in a failure rate as 

high as 43%. Deep reinforcement learning (DRL), as a frontier technology in artificial intelligence, provides a new 

opportunity to overcome the challenges of indoor UAV navigation [15]. Early exploratory research has applied 

DRL algorithms to enable UAVs to learn navigation strategies in simple simulated indoor environments—such as 

regular rectangular spaces with few static obstacles—and achieved certain results, with success rates reaching 

approximately 72%. However, when applied to realistic and complex indoor environments, traditional DRL 

methods exhibit multiple limitations. When obstacle positions change by more than 32%, or when new obstacle 

types are introduced, the navigation success rate of traditional DRL models drops sharply to below 38%, with an 

average response delay exceeding 2.2 seconds. This is mainly because traditional DRL algorithms lack sufficient 

capability in modeling the state space of complex environments. They struggle to handle high-dimensional and 

dynamically changing information effectively, resulting in unstable policy learning and poor convergence toward 

optimal solutions [16]. Consequently, they fail to meet the demanding requirements of real-time performance, 

accuracy and reliability in practical UAV navigation. 

 

To address these issues, this paper proposes DRAL-UAV, a deep reinforcement adaptive learning framework. The 

framework is designed specifically to address the complexity of unknown indoor environments, covering 

theoretical foundations, model structure, and algorithmic improvements. It builds a hierarchical policy network 

that combines an advanced visual encoder, an efficient recurrent memory module, and an intelligent adaptive 

reward adjustment mechanism. This design aims to equip UAVs with the ability to accurately and efficiently 

process complex environmental information in unknown indoor spaces, enabling fast and reliable path planning 

and autonomous navigation. Training and evaluation are conducted on the AirSim 3D simulation platform, which 

includes complex factors such as dynamic obstacles, narrow corridors, and irregular spatial layouts [12]. The 

experimental results comprehensively demonstrate the superior performance and significant advantages of 

DRAL-UAV in navigating unknown indoor environments, offering a new technological approach for UAV 

deployment in indoor scenarios. 

 

2. METHOD 
 

The DRAL-UAV framework enables efficient decision-making for navigation in complex environments through 

the integrated design of a hierarchical policy network, visual encoder, recurrent memory module and adaptive 

reward mechanism. 

 

2.1 Hierarchical Policy Network 

 

DRAL-UAV employs a hierarchical decision-making structure (Table 1). The high-level policy network consists 

of three fully connected layers with 256, 128 and 64 neurons, respectively, and is constructed based on a value 

iteration algorithm. It generates global navigation directions by extracting macro-level environmental features, 

such as the overall layout and target location [17,18]. The low-level policy network contains two fully connected 

layers with 128 and 32 neurons and is trained using a policy gradient algorithm. It produces specific flight 

instructions—such as velocity and orientation—based on local environmental observations, including obstacle 

distances and corridor widths [19,20]. By decoupling decision layers, this structure reduces the complexity of the 

state space by 40% and improves decision-making efficiency by 35%, as verified through 1000 simulation trials. 

Table 1: Network Parameters of the Hierarchical Policy Architecture 

Network Level Hidden Layers Neuron Configuration Core Algorithm Functional Description 

High-Level Policy 3 256–128–64 Value Iteration Global Path Planning 

Low-Level Policy 2 128–32 Policy Gradient 
Generation of Local 

Control Commands 

 

2.2 Visual Encoder and Environmental Perception 

 

The visual encoder consists of a five-layer convolutional neural network (CNN) [21]. The first three layers use 3×3 
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convolution kernels with a stride of 1 to extract local features such as edges and textures. The last two layers use 

5×5 kernels with a stride of 2 to expand the receptive field and capture global structural information. With weights 

initialized by transfer learning and trained over 100,000 iterations, the encoder achieves an obstacle recognition 

accuracy of 95.2% when the intersection over union (IoU) is no less than 0.7. This provides reliable visual input for 

downstream decision-making. 

 

2.3 Dynamic Obstacle Prediction Module 

 

A 128-unit Long Short-Term Memory (LSTM) network is adopted as the recurrent memory module [22]. It 

predicts the position of dynamic obstacles over the next 1 second based on observation sequences from the 

previous 5 seconds. Experimental results show that in scenarios involving typical dynamic obstacles such as 

pedestrians and vehicles, the module achieves a root mean square error (RMSE) of 0.3 meters and a prediction 

accuracy of 85%. This significantly enhances the UAV’s ability to anticipate dynamic hazards. 

 

2.4 Adaptive Reward Adjustment Mechanism 

 

To overcome the limitations of fixed reward functions, a dynamic reward strategy is introduced (see Table 2). 

Specifically, for every 1-meter reduction in distance to the target, a reward of +5 is assigned; if the distance to an 

obstacle is less than 0.5 meters, a penalty of −10 is applied. With real-time reward feedback, the learning efficiency 

of the UAV improves by 40%, and policy convergence is achieved 200 iterations earlier than with the traditional 

DDPG algorithm (validated over 50 training cycles). 

Table 2: Reward Triggers and Functional Roles in UAV Navigation Strategy 

Trigger Condition Reward Value Functional Mechanism 

Target distance decreases by 1 meter +5 Encourages goal-oriented behavior 

Obstacle distance < 0.5 meters −10 Penalizes unsafe proximity behavior 

 

3. RESULTS AND DISCUSSION 
 

3.1 Experimental Setup 

 

A total of 100 indoor scenarios were constructed on the AirSim platform, including 30 office scenes, 40 warehouse 

scenes and 30 hybrid scenes. Each scenario contained 10 ± 2 dynamic obstacles. The corridor width-to-UAV body 

width ratio ranged from 1.2 to 1.8. The comparative algorithms included A* (using Manhattan distance as the 

heuristic function) and DDPG (with a replay buffer size of 105 and a learning rate of 1e−4). Each algorithm was 

tested 50 times in every scenario. Metrics recorded included navigation success rate, path length, execution time, 

and failure patterns [23,24]. 

 

3.2 Quantitative Experimental Results 

Table 3: Navigation Performance Comparison Across Different Scenarios 

Scenario 

Type 
Algorithm 

Success 

Rate (%) 

Average 

Path Length 

(m) 

Average 

Execution 

Time (s) 

Collision 

Failure Rate 

(%) 

Timeout 

Failure Rate 

(%) 

Office DRAL-UAV 
95.0 ± 

2.1** 
– 12.0 ± 1.5 2.0 ± 0.8 3.0 ± 1.2 

Office A* Algorithm 
68.2 ± 

5.3* 
– 18.5 ± 3.2 15.3 ± 4.1 16.5 ± 3.8 

Office 
DDPG 

Algorithm 

80.5 ± 

3.7* 
– 15.2 ± 2.3 8.7 ± 2.5 10.8 ± 2.9 

Warehouse DRAL-UAV 
90.3 ± 

3.2** 
35.0 ± 4.2 18.1 ± 2.1 4.1 ± 1.3 5.6 ± 1.8 

Warehouse A* Algorithm 
62.1 ± 

6.8* 
55.2 ± 7.5 28.3 ± 4.5 18.2 ± 5.3 19.7 ± 6.1 

Warehouse 
DDPG 

Algorithm 

76.4 ± 

4.5* 
49.1 ± 6.8 22.4 ± 3.3 10.5 ± 3.2 13.1 ± 4.0 

Note: ** p < 0.01, * p < 0.05 (two-tailed t-test), n = 100 scenarios × 50 runs 
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Table 4: Path Planning Performance in Narrow Corridor Scenarios 

Corridor Width Ratio Algorithm Path Length Increase Rate (%) Failure Rate (%) 

1.2 DRAL-UAV 7.2 ± 1.5 5.0 ± 1.2 

1.2 A* Algorithm 25.3 ± 4.2 * 20.1 ± 5.3 

1.2 DDPG Algorithm 18.4 ± 3.5 * 12.2 ± 3.8 

1.5 DRAL-UAV 5.1 ± 1.0 3.2 ± 0.9 

1.8 DRAL-UAV 3.0 ± 0.7 2.1 ± 0.5 

 

3.3 Result Analysis 

 

The hierarchical network in DRAL-UAV adopts a "global planning–local adjustment" mechanism [25,26]. In 

complex environments such as warehouses, it achieves a 45.4% higher success rate compared to the A* algorithm. 

The high-level network avoids local optimum traps, while the low-level network performs real-time adjustments 

based on dynamic perception, reducing the collision failure rate by 73.8% compared to A*. This hierarchical 

architecture reduces the dimensionality of the state space from 1024 to 256, significantly improving 

decision-making efficiency and maintaining stable performance even when obstacle density varies [27]. The 

combination of the visual encoder and LSTM enables the UAV to predict obstacle movement trajectories 0.8 

seconds in advance under dynamic conditions. In narrow corridor scenarios, the path length increase rate is only 

28.5% of that observed with the A* algorithm [28]. The adaptive reward mechanism provides real-time feedback, 

accelerating policy updates. In warehouse environments, the training cycle is shortened by 40% compared to 

DDPG, effectively addressing the convergence difficulty faced by traditional DRL algorithms in complex settings 

[29]. The A* algorithm, due to its reliance on static maps, requires frequent re-planning in dynamic obstacle 

environments [30]. This results in a 57.2% increase in execution time and leads to redundant path generation. The 

DDPG algorithm, due to incomplete modeling of the state space, shows poor generalization in partially observable 

environments [31]. In narrow corridor scenarios, its failure rate is 2.4 times higher than that of DRAL-UAV, 

revealing its insufficient use of historical information. 

 

4. CONCLUSION 
 

The DRAL-UAV framework proposed in this study addresses the problem of UAV navigation in unknown indoor 

environments through the coordinated design of a hierarchical policy network, dynamic perception module and 

adaptive reward mechanism. Experimental results show that the framework achieves significantly better 

performance than traditional methods in terms of navigation success rate, path efficiency, and adaptability to 

dynamic environments, providing a reliable technical solution for UAV applications in complex indoor scenarios. 

In practical deployment, DRAL-UAV can be directly applied to rubble navigation in search and rescue missions, 

collaborative operations with warehouse robots, and autonomous inspection of industrial facilities, effectively 

improving task efficiency and safety. Future work may further investigate multi-sensor fusion (such as LiDAR and 

vision integration) and online transfer learning to better adapt to more complex and unstructured environments, 

promoting the practical implementation of autonomous UAV navigation technology. 
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