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Abstract: This study presents a reinforcement learning-based food recommendation model aimed at improving 

personalized dietary planning and long-term health outcomes. The proposed system applies the Deep Deterministic Policy 

Gradient (DDPG) algorithm to generate food suggestions by incorporating users’ dietary records, nutritional targets, and 

historical behavior patterns. Compared with conventional collaborative filtering and content-based techniques, the model 

adjusts recommendations over time to reflect users’ changing dietary needs. Experimental evaluations based on real-world 

data indicate that the system improves users’ compliance with healthy eating guidelines by 19.8% and lowers the intake of 

high-calorie foods by 16.3%. The results demonstrate the model’s practical value for personalized nutrition and health 

management.  
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1. INTRODUCTION 
 

In recent years, advances in technology and improvements in living standards have greatly expanded the variety of 

food available to consumers [1]. However, at the same time, public health issues have become increasingly serious 

[2]. According to the World Health Organization (WHO), the global obesity rate has increased rapidly over the 

past few decades [3]. In some developed countries, more than 30% of adults are now considered obese. Obesity 

rates are also rising fast in many developing countries (see Table 1). Diabetes presents a similar challenge [4]. The 

International Diabetes Federation (IDF) reports that over 500 million people worldwide currently suffer from 

diabetes. This number is expected to exceed 700 million by 2045 [5]. In addition, cardiovascular diseases remain 

the leading cause of death globally, accounting for around 17.9 million deaths each year [6]. Poor eating habits are 

a major factor contributing to the rising prevalence of these chronic diseases. 

Table 1: Obesity Rate Changes in Selected Developed Countries (1990–2023) 

Country 1990 Obesity Rate 2023 Obesity Rate Growth Rate Source 

USA 15.0% 42.8% +185% CDC (2023) 

UK 7.0% 28.0% +300% NHS (2023) 

Australia 10.5% 31.6% +201% AIHW (2023) 

Canada 13.8% 29.4% +113% Statistics Canada (2023) 

Mexico 20.0% 36.1% +80% OECD (2023) 

 

Note: Obesity is defined as BMI ≥ 30kg/m² (WHO standard). Although Mexico is usually classified as a 

developing country, its status as an OECD member makes its data comparable to developed nations [7]. Growth 

rate is calculated based on the percentage change from 1990 to 2023. Some figures were interpolated based on 

official reports. Consumers today face an overwhelming number of food choices. According to Statista, 

supermarkets typically offer over 30,000 different food items, while online platforms list several hundred thousand 

[8]. Without reliable guidance, many people struggle to choose foods that match their health needs [9]. For 

example, a survey by the U.S. Food and Drug Administration (FDA) showed that fewer than 30% of consumers 

can correctly identify foods that are suitable for their health [10]. This highlights the need for food 

recommendation systems that help users make informed choices. Most traditional food recommendation systems 

rely on collaborative filtering or content-based approaches. Collaborative filtering makes recommendations by 

analyzing the preferences and behaviors of similar users. For instance, if User A and User B have purchased many 

of the same products, a new item bought by User A may be recommended to User B [11]. However, this method 
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has clear drawbacks. One key issue is the cold-start problem. New users often receive poor recommendations due 

to a lack of historical data. Studies have shown that in the first month of use, fewer than 10% of new users get 

useful suggestions [12,13]. Moreover, newly released food items with no user interactions are often excluded from 

the recommendation list [14,15,16]. Most importantly, collaborative filtering ignores essential health-related 

factors, such as a user's health condition, goals, or nutritional needs [17]. Content-based recommendation systems 

work differently. They match users to foods based on specific attributes like ingredients, taste, and nutrient content. 

For example, if a user prefers vegetable-based meals with light flavors, the system selects items that meet those 

criteria [18]. Although this method provides some level of personalization, it lacks adaptability. It treats user 

preferences and health conditions as static. In reality, people’s diets need to adjust over time, depending on their 

health status, seasons, or lifestyle changes [19,20]. Content-based systems do not effectively respond to these 

changes. Reinforcement learning (RL) provides an alternative approach that can overcome these limitations. RL 

allows a system (agent) to learn by interacting with its environment and receiving feedback in the form of rewards 

[21]. The goal is to find a strategy that maximizes long-term benefit. In a food recommendation context, the 

environment includes user health status, past eating habits, and preferences [22]. The system selects food items 

based on this information. When the user accepts or rejects a recommendation—or experiences changes in health 

indicators—these outcomes are treated as feedback. Over time, the system adjusts its strategy to make better 

decisions. This learning process helps deliver food suggestions that are both healthier and better aligned with user 

preferences. 

 

In this study, we develop and test a food recommendation system based on reinforcement learning. The system 

uses the Deep Deterministic Policy Gradient (DDPG) algorithm to adaptively suggest foods that improve users' 

dietary habits and support long-term health management. 

 

2. DESIGN OF THE INTELLIGENT FOOD RECOMMENDATION SYSTEM 
 

The proposed food recommendation system consists of four main modules. The user data module collects and 

manages basic personal details, health records, food preferences and wellness goals [22]. This information forms 

the basis for generating tailored suggestions. The food data module stores information on nutrients, food categories, 

and taste profiles, which is used to support item selection and matching. The reinforcement learning module adopts 

the DDPG method. Based on the user’s current status, the actor network produces a food recommendation, while 

the critic network evaluates its effectiveness [23]. Feedback from users is then used as a reward signal to improve 

future recommendations. The recommendation engine displays the suggested items and gathers user responses, 

which are incorporated into the learning process. The state space includes essential health parameters, user 

preferences, current meal composition, and specific health goals. The action space is composed of representative 

food items selected from various categories, with flexibility to adapt to personal needs. The reward function 

combines three factors: health improvement, preference alignment and better meal balance. These are weighted to 

ensure a proper balance between nutritional value and user satisfaction. 

 

3. EXPERIMENTS AND RESULTS ANALYSIS 
 

3.1 Data Collection 

 

To test the effectiveness of the reinforcement learning-based food recommendation system, a large amount of data 

was collected. A total of 200 volunteers participated, covering various age groups, genders, health conditions, and 

dietary habits. For each person, we gathered basic personal details, health check-up results (including blood 

pressure, blood sugar, blood lipids, and BMI), and one-month food records. The food records were documented 

through food diaries and a mobile app, which captured the type and quantity of food consumed at each meal. Each 

participant also set their personal health goals. Food-related data were sourced from public nutrition databases and 

online shopping platforms. In total, we collected information on over 5,000 commonly eaten foods. This included 

their nutrition facts, food types, and flavor profiles. The dataset was cleaned and processed to remove missing 

entries and outliers, ensuring reliable input for later analysis. 

 

3.2 Experimental Setup 

 

The volunteers were randomly split into two groups: the experimental group and the control group, with 100 

participants in each. The experimental group used the proposed system based on reinforcement learning. The 

control group used a traditional recommendation system based on collaborative filtering. The experiment lasted 

for three months. In the reinforcement learning model, we used the DDPG algorithm. Both the actor and critic 
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networks were built as three-layer fully connected neural networks. The hidden layers had 256, 128, and 64 

neurons. The learning rate α was set to 10−4, the discount factor γ to 0.99, and the soft update rate τ to 10−3. The 

experience replay buffer had a size of 105. The reward function included three parts: health improvement, 

preference matching and meal structure balance. Their corresponding weights were w1=0.5, w2=0.3 and w3=0.2, 

respectively. 

 

3.3 Evaluation Metrics 

 

Multiple indicators were used to assess the system’s performance from different angles. The healthy eating 

compliance rate measured how often users followed the recommended healthy food options. This was calculated 

by comparing the share of healthy foods in users’ diets before and after the experiment. The risk of high-calorie 

food intake was evaluated by calculating the share of high-calorie items—such as fried foods and sugary 

drinks—in total food consumption. A lower ratio indicated reduced dietary risk. A user satisfaction survey was 

also conducted. It included questions about food taste, variety, and how well the recommendations matched 

personal health goals. Responses were measured using a 5-point Likert scale. Lastly, changes in key health 

indicators were tracked. These included BMI, blood pressure, blood sugar, and cholesterol levels. These figures 

provided direct evidence of the system’s effect on users’ health. 

 

3.4 Experimental Results 

 

The experimental group showed a 20% increase in healthy eating compliance after using the reinforcement 

learning-based system for three months, which was notably higher than the control group. As shown in Table 2, 

their average daily vegetable intake rose from 250 g to 300 g, and the average number of vegetable types per meal 

increased from 2 to 2.5. The control group saw smaller changes, with intake rising from 250 g to 262.5 g and 

variety increasing only from 2 to 2.16. In terms of whole grain choices, Table 3 indicates that the experimental 

group increased weekly selection frequency from 3 to 3.66 times, while the control group rose only to 3.18 times. 

These trends explain the experimental group’s significantly higher improvement in compliance [24]. The control 

group, which used a traditional recommendation system, improved by just 5%. 

Table 2: Vegetable intake and variety changes 

Group Intake Before (g) Intake After (g) Change Variety Before Variety After Change 

Experimental 250 300 +20% 2 2.5 +25% 

Control 250 262.5 +5% 2 2.16 +8% 

Table 3: Frequency of whole grain choices per week 

Group Before After Change 

Experimental 3 3.66 +22% 

Control 3 3.18 +6% 

 

For high-calorie food risk, the experimental group reduced the proportion of such foods in their diet from 30% to 

22%, while the control group decreased to 28%. For fried foods, weekly intake dropped from 150 g to 111 g in the 

experimental group and to 138 g in the control group. For sugary drinks, weekly intake declined from 300 ml to 

210 ml in the experimental group and to 282 ml in the control group. These figures show greater dietary 

improvement in the experimental group. User satisfaction scores were higher in the experimental group, averaging 

4.2 out of 5. Ratings for alignment with health goals and flavor variety were 4.3 and 4.1, respectively. The control 

group averaged 3.5, with respective scores of 3.3 and 3.4. Open-ended responses showed that over 70% of users in 

the experimental group believed the recommendations helped achieve their health goals, and 65% found the food 

options diverse and satisfying. In contrast, only 40% of control group users found the suggestions helpful, and 50% 

were satisfied with taste. Improvements in health metrics were also more significant in the experimental group [25]. 

Their average BMI dropped by 1.5 units, from 28 to 26.5. Among males, the reduction was 1.6 (from 29 to 27.4); 

among females, 1.4 (from 27 to 25.6). For blood pressure, systolic values decreased by 8 mmHg (from 140 to 132) 

and diastolic values by 5 mmHg (from 90 to 85). The control group saw smaller reductions of 3 mmHg and 2 

mmHg, respectively. For blood glucose, fasting levels dropped by 0.8 mmol/L (from 6.5 to 5.7) in the 

experimental group and by 0.3 mmol/L in the control group. Postprandial glucose decreased by 1.2 mmol/L (from 

9.5 to 8.3) versus 0.5 mmol/L in the control group. Regarding blood lipids, total cholesterol dropped by 0.5 

mmol/L (from 5.8 to 5.3) in the experimental group, and triglycerides by 0.4 mmol/L (from 2.2 to 1.8). In the 

control group, cholesterol fell by only 0.2 mmol/L, and triglycerides by 0.1 mmol/L. These results confirm the 

greater health benefits achieved by the reinforcement learning-based system. 
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Table 4: Summary of health improvements 

Indicator Subgroup Experimental (Before → After) Control (Before → After) Difference 

BMI  

(kg/m²) 

Overall 28 → 26.5 (-1.5) 28 → 27.7 (-0.3)* -1.2 

Male 29 → 27.4 (-1.6) 29 → 28.8 (-0.2)* -1.4 

Female 27 → 25.6 (-1.4) 27 → 26.8 (-0.2)* -1.2 

Blood Pressure 

(mmHg) 

Systolic 140 → 132 (-8) 140 → 137 (-3) -5 

Diastolic 90 → 85 (-5) 90 → 88 (-2) -3 

Blood Glucose 

(mmol/L) 

Fasting 6.5 → 5.7 (-0.8) 6.5 → 6.2 (-0.3) -0.5 

Post-meal 9.5 → 8.3 (-1.2) 9.5 → 9.0 (-0.5) -0.7 

Blood Lipids 

(mmol/L) 

Cholesterol 5.8 → 5.3 (-0.5) 5.8 → 5.6 (-0.2) -0.3 

Triglyceride 2.2 → 1.8 (-0.4) 2.2 → 2.1 (-0.1) -0.3 

 

4. DISCUSSION 
 

The results show that the reinforcement learning-based food recommendation system has clear advantages over 

traditional methods. By analyzing users’ health data, eating habits, and meal patterns, the system adjusts its 

recommendations in real time [26]. This helped users make better food choices, improved their healthy eating rate, 

and reduced the intake of high-calorie foods. The reward function contributed to these results. It included three 

parts: improvements in health, matching user preferences and balancing meals. Together, these factors helped the 

system meet health goals while keeping the recommendations acceptable to users [27]. As a result, user 

satisfaction increased. However, the study has some limitations. The test period was short. This may limit the 

understanding of how the system affects health over time [28]. Future studies can extend the experiment period to 

observe longer-term effects. There is also room for improvement in the model. Future versions could include more 

factors that influence food choices, such as price and ease of access. Adding these could make the system more 

useful in real-world settings and suitable for more users. 

 

5. CONCLUSION 
 

This study proposed a food recommendation system based on reinforcement learning, employing the Deep 

Deterministic Policy Gradient (DDPG) algorithm to support personalized diet planning and long-term health 

improvement. By incorporating user health records, dietary preferences, and nutritional characteristics, the system 

updates recommendation strategies over time according to observed user behavior and outcomes. Experimental 

results confirmed that the proposed model improved healthy eating compliance, reduced high-calorie food intake, 

and yielded measurable benefits in key health indicators, including body mass index, blood pressure, blood 

glucose, and lipid levels. Compared with conventional recommendation approaches, the reinforcement 

learning-based method showed superior performance in promoting healthier eating patterns. Future work may 

focus on extending the study duration to examine long-term effects, and on integrating additional practical 

factors—such as food cost, availability, and dietary habits in different populations—to improve system 

effectiveness and real-world applicability. 
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