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Abstract: In this work, I will provide a general comparison of the conventional financial economic approaches and the 

contemporary machine learning techniques in forecasting stock market volatility. On a sample of 505 S&P 500 stocks 

between 2013 and 2018, we apply several GARCH models, as well as a random forest and LSTM neural networks. According 

to our analysis, 1/1/ Student-t GARCH(1,1) is the best model in comparison with other traditional models due to its 

performance on a variety of volatility regimes. The machine learning exploration shows the strong limitations of data 

leakage and autocorrelation in financial time series, and it has very important methodological implications. Findings 

indicate that GARCH models attained realistic out of sample RMSE values of 0.96-4.82 whereas optimally implemented ML 

models result in more modest but candid performance indicators. The study will add to the knowledge about the 

shortcomings of volatility models and offer a strict framework of comparing econometric and machine learning methods in 

financial forecasting. 
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1. Introduction 
 

The prediction of volatility is one of the most difficult issues in financial econometrics and has great implications 

to risk management, portfolio optimization, and derivatives pricing (Poon & Granger, 2003). Since their 

introduction by Engle (1982) and Bollerslev (1986), traditional econometric methods, and especially Generalized 

Autoregressive Conditional Heteroskedasticity (GARCH) models, have been used. Nevertheless, with the advent 

of machine learning procedures, researchers proposed whether contemporary algorithms can be more successful 

than the existing ones in covering the complex nonlinear dynamics of financial volatility. 

 

The availability of more frequent and higher-frequency financial information and computing capabilities has 

opened the door to using more complex machine learning algorithms, such as Random Forests (Breiman, 2001) 

and Long Short-Term Memory (LSTM) networks (Hochreiter and Schmidhuber, 1997), to volatility prediction. 

Although such methods are theoretically attractive, their application to financial time series is marked by some 

special challenges, especially in terms of the leakage of time-dependent information and management of the 

autocorrelated residues. 

 

The study fills a serious gap in the literature by offering a strict comparison between the traditional GARCH 

models and contemporary machine learning methods, paying specific attention to the methodological traps that 

invalidate the findings. The contribution of our study to the field is as follows: (1) the use of a comprehensive 

GARCH model comparison across the various variants, (2) a systematic framework of detecting and dealing with 

data leakage in a financial machine learning application, and (3) an honest performance evaluation that recognises 

the inseparable nature of each of the approaches. 

 

2. Literature Review 
 

2.1 GARCH Models in Volatility Forecasting 

 

GARCH, known since Bollerslev (1986) has entered the literature, has become the model of choice when it comes 

to modeling time-varying volatility in a financial market. The simple GARCH(1,1) model deals with the volatility 

clustering effect initially observed by Mandelbrot (1963) in which high volatility periods are more likely to be 

succeeded by high volatility periods and vice-versa. 
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The basic GARCH model has been extended to specific empirical regularities in the finance data. The GJR-

GARCH model (Glosten et al., 1993) is more appropriate in capturing the asymmetric volatility reactions whereas 

the EGARCH model (Nelson, 1991) lets the conditional volatility be exponential. It has been demonstrated that 

non-normal error distributions (especially the Student-t distribution) can be used to enhance the model 

performance in terms of extreme tail distributions of returns (Bollerslev et al., 1994). 

 

According to recent analytic comparative research studies by Hansen and Lunde (2005), simple GARCH(1,1) 

models tend to out-of-sample forecast better than more complicated specifications in volatility modelling, which 

advocates the principle of parsimony in volatility modelling. 

 

2.2 Machine Learning in Financial Forecasting 

 

It has attracted a lot of attention to the application of machine learning to financial time series, and both random 

forests and neural networks have proven promising in different situations (Gu et al., 2020). The benefits of Random 

Forests in finance applications are that it is resistant to outliers and can also represent non-linear relationships 

without specification (Liaw and Wiener, 2002). 

 

Time series LSTM networks have been especially popular because they are capable of capturing long-term 

dependencies (Graves, 2012). Fischer, and Krauss (2018) show the LSTM models promise in predicting stock 

returns though it is not in the same line as volatility forecasting. 

 

Nevertheless, recent research by Lopez de Prado (2018) showcases that the majority of financial machine learning 

applications are prone to data leakage and overfitting, which is why it is essential to implement delicate validation 

procedures with time series-specific data. 

 

3. Data and Methodology 
 

 
Figure 1: Four-phase research workflow showing dataset preparation (505 S&P 500 stocks), feature engineering 

(95 variables), GARCH modeling (four variants), and ML implementation with a systematic data leakage 

detection framework and iterative refinement process. 

3.1 Dataset Description 

 

We used a total of 619,040 observations and 505 individual stocks of the S&P 500 stock prices to analyze the data 

between February 8, 2013, and February 7, 2018. The records contain daily open, high, low, close price and trading 

volume with a total of 1,259 exclusive trading days per stock. 
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Table 1: Dataset Summary Statistics 

Metric Value 

Total Observations 619,040 

Unique Stocks 505 

Time Period 2013-02-08 to 2018-02-07 

Trading Days 1,259 

Data Completeness 99.91% 

Average Daily Volume 4,321,823 

Price Range $1.59 - $2,049.00 

 

Validation of data quality showed that there were a small percentage of missing values (0.087) and high logical 

consistency on the OHLC relationship. The dataset has common features of financial time series such as volatility 

clustering and fat tailed returns. 

 

3.2 Stock Selection Methodology 

 

We used a systematic process of selecting stocks to make sure that the volatility profiles would be diverse enough 

to be analyzed effectively including the data completeness, volatility, and sector representation. Five stocks were 

chosen, which reflect various volatility regimes: 

 

Table 2: Selected Stocks for Analysis 

Stock Sector Ann. Volatility Avg. Price Avg. Volume Records 

CHK Energy 66.1% $13.68 24,957,711 1,259 

PEP Consumer Staples 13.4% $97.47 4,514,718 1,259 

PCLN Technology 25.8% $1,312.87 630,293 1,259 

AAPL Technology 23.2% $109.07 54,047,900 1,259 

JPM Financial 20.4% $67.64 16,589,033 1,259 

 

3.3 Feature Engineering 

 

The feature set that we created has 95 variables in various categories: basic price and volume statistics, volatility 

measures, technical indicators, and lagged features. Important categories of features are: 

Volatility Measures: Realized volatility, Garman-Klass estimator, Parkinson estimator, and exponentially 

weighted volatility calculated across multiple time windows (5, 10, 20, 30 days). 

Technical Indicators: Moving averages, Bollinger Bands, Relative Strength Index (RSI), and MACD indicators, 

all properly lagged to prevent data leakage. 

Lag Features: Historical returns and volatility measures at 1, 2, 3, 5, and 10-day lags to capture temporal 

dependencies. 
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3.4 GARCH Model Implementation 

 

We implemented four GARCH variants for comprehensive comparison: 

 

1. GARCH(1,1) with normal distribution 

2. GJR-GARCH(1,1) capturing asymmetric effects 

3. EGARCH(1,1) with exponential specification 

4. GARCH(1,1) with Student-t distribution 

 

Maximum likelihood estimation with the arch library of Python was used to estimate the models. Model selection 

was done based on Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC), diagnostics 

tests were Ljung-Box tests to check remaining ARCH effects and Jarque-Braun normality tests to check the 

normalized residual. 

 

 
Figure 2: Volatility measures comparison for CHK (2013-2018) showing multiple estimation methods with a 

notable 2015-2016 volatility spike during the energy sector market stress. 

 

3.5 Machine Learning Implementation 

 

Random Forest: The random forest was conducted with time series cross-validation within scikit-learn. The grid 

search was used in hyperparameter optimization with nestimators (100, 200), maxdepth (10, 20, max), and 

minsplits (2, 5). 

 

LSTM Networks: Done in TensorFlow, where the sequence length is 20 days. There were two layers of LSTM 

(50 units each) with dropout regularization (0.2), and then dense layers were utilized to make predictions. 

 

3.6 Data Leakage Detection Framework 

 

Given the prevalence of data leakage in financial machine learning (López de Prado, 2018), we developed a 

systematic five-test framework: 

 

1. Temporal Information Flow Analysis: Examining feature-target temporal relationships 

2. Feature Construction Timeline Analysis: Mapping data availability windows 

3. Mutual Information Analysis: Measuring information content between features and targets 

4. Forward-Looking Feature Test: Adding artificial future information to test model sensitivity 

5. Cross-Validation Comparison: Comparing TimeSeriesSplit versus ShuffleSplit performance 

 

4. Results 
 

4.1 GARCH Model Results 

 

Results of GARCH model estimation show a similar trend among the five stocks of choice. GARCH(1,1) with 

Student-t turned out to be the best specification of all stocks in terms of information criteria. 
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Table 3: GARCH Model Comparison Results 

Stock Best Model AIC BIC Parameters Significant 

CHK GARCH(1,1)-t 5,138.07 5,162.64 α₁=0.053***, β₁=0.947***, ν=4.71*** 

PEP GARCH(1,1)-t 2,521.53 2,546.10 α₁=0.215***, β₁=0.385***, ν=7.08*** 

PCLN GARCH(1,1)-t 3,684.73 3,709.30 α₁=0.122***, β₁=0.721***, ν=3.80*** 

AAPL GARCH(1,1)-t 3,553.31 3,577.88 α₁=0.089***, β₁=0.831***, ν=4.32*** 

JPM GARCH(1,1)-t 3,293.69 3,318.26 α₁=0.113***, β₁=0.814***, ν=4.76*** 

Note: *** indicates significance at 1% level 

 

The persistence parameter (α₁ + β₁) will tend towards a value of unity in all stocks and this is evidence of high 

volatility persistence behavior of financial time series. The degrees of freedom parameter (ν) remains always in 

the range of 3.80 to 7.08 and indicates the use of the Student-t distribution to model fat-tailed distributions of 

returns. 

 

4.2 GARCH Diagnostic Tests 

 

The GARCH specifications are determined to be adequate by model diagnostics. The results of Ljung-Box tests 

of squared standardized residuals show that ARCH effects have been successfully eliminated (p-values > 0.33 for 

all stocks). But Jarque-Bra tests reject normality of standardized residuals in all stocks and hence student-t 

distribution is used. 

 

Table 4: GARCH Model Diagnostic Tests 

Stock ARCH Test (p-value) Jarque-Bera (p-value) Model Adequacy 

CHK 0.330 < 0.001 Adequate 

PEP 0.839 < 0.001 Adequate 

PCLN 0.998 < 0.001 Adequate 

AAPL 0.964 < 0.001 Adequate 

JPM 0.865 < 0.001 Adequate 

 

4.3 Out-of-Sample Forecasting Performance 

 

GARCH models exhibit realistic forecasting properties in agreement with the existing literature. The optimal 

EGARCH(1,1) specification results have 0.96 to 4.82 values of RMSE based on various stocks. 
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Table 5: Out-of-Sample Forecasting Results 

Stock Best GARCH Model RMSE MAE Correlation 

CHK EGARCH(1,1) 4.822 3.971 -0.058 

PEP EGARCH(1,1) 0.574 0.485 0.101 

PCLN EGARCH(1,1) 1.515 1.145 0.029 

AAPL EGARCH(1,1) 1.039 0.887 0.140 

JPM EGARCH(1,1) 0.961 0.805 0.090 

 

The dispersion in the RMSE measures is the difference in volatility regimes predicated by our stocks of choice 

with CHK (energy sector) showing the largest forecasting errors as a result of its high volatility (66.1% annualized). 

 

 
Figure 3: Conditional volatility estimates from GARCH(1,1)-t models for AAPL and CHK showing contrasting 

volatility patterns. AAPL exhibits moderate clustering while CHK displays extreme spikes during 2015-2016. 

 

4.4 Machine Learning Results and Data Leakage Analysis 

 

The first attempts at machine learning produced uniformly suspicious outcomes (R 2 above 99.9) with all stocks, 

leading to a search into the possibility of data leakage. The systematic five-test framework showed there were 

serious contamination problems over time. 
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Table 6: Data Leakage Detection Framework Results 

Test Result Interpretation 

Temporal Information Flow 4 high-risk features identified Features using overlapping time windows 

Feature Construction Timeline Multiple violations detected Same-period volatility measures 

Mutual Information Maximum MI = 2.09 Excessive information content 

Forward-Looking Feature -2.6% improvement Limited sensitivity to future data 

Cross-Validation Comparison Ratio = 0.24 Strong evidence of leakage 

 

The most conclusive evidence was given by the cross-validation comparison test where shuffle splits fared better 

than time series splits by a factor of 4, which demonstrated the existence of future exploitation in the models. 

 

4.5 Corrected Machine Learning Implementation 

 

Machine learning models became more realistic but with lower performance after proper temporal separation (21-

day gap between features and targets): 

 

Table 7: Machine Learning Performance After Leakage Correction 

Stock Random Forest R² LSTM R² Random Forest RMSE LSTM RMSE 

CHK 0.999 0.013 0.0018 0.093 

PEP 0.999 -2.437 0.0004 0.031 

PCLN 0.998 0.519 0.0058 0.084 

AAPL 1.000 0.620 0.0009 0.032 

JPM 1.000 -14.079 0.0004 0.115 

Note: Even after correction, Random Forest results remain suspiciously high, suggesting remaining methodological issues. 

 

4.6 Autocorrelation Analysis 

 

Through the deep diagnostic analysis, the underlying causes of the sustained cross-validation problems are the 

autocorrelation structure of the volatility and not the leakage of information. There was an autocorrelation analysis 

of target variables, which revealed: 

 

● Lag-1 autocorrelation: 0.968 

● Autocorrelation remains above 0.3 for 15+ lags 

● Regime change indicator: 0.206 (significant) 
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Figure 4: CHK Random Forest analysis showing feature importance rankings and prediction accuracy. The 

perfect linear relationship (right) and extreme dominance of realized_vol_20d (left) indicated data leakage issues 

that prompted systematic validation framework development. 

 

Such results are consistent with existing information regarding volatility clustering in financial markets 

(Mandelbrot, 1963) and the reason why time series splits are inevitably harder to predict volatility than random 

splits. 

 

5. Discussion 
 

5.1 GARCH Model Performance 

 

The results of our GARCH analysis substantiate some of the well-known results in the volatility forecasting 

literature. The overall high performance of GARCH(1,1) with Student-t distribution in a wide variety of stocks 

proves the parsimony principle that Hansen and Lunde (2005) argue about. The near-integrated nature of volatility 

processes can be verified by the high volatility persistence parameters(α₁ + β₁ ≈ 1). 

 

The difference in forecasting performance of the stocks indicates the difference in the volatility of the stocks. The 

low predictive power of the forecast by CHK (RMSE = 4.82) is due to the volatility in the energy sector that is 

inherent in our sample period, which featured major fluctuations in oil prices. On the other hand, PEP has the 

highest performance (RMSE = 0.57) due to the stable characteristics of consumer staples. 

 

5.2 Machine Learning Challenges 

 

The machine learning aspect of the research indicates some important methodological issues of the application of 

these methods to financial time series. The early high precision (R 2 > 99) is a cautionary signal of how data 

leakage is widespread in financial machine learning applications, in line with the warnings of Lopez de Prado 

(2018). 

 

Our data leakage detection system is systematic and offers a reproducible data mining approach to identifying 

temporal contamination problems. Five-test method provides researchers with the practical instruments to validate 

the machine learning application in the financial field which is a gap gap in the existing practice. 

 

The same problem is indicated by the fact that cross-validation problems persist in spite of using an adequate 

temporal separation, which is the core of the problem of volatility autocorrelation. This result indicates that 

standard methods of machine learning validation might not be sufficient to financial time series without attentive 

analysis of the data structure of the underlying data. 

 

5.3 Methodological Contributions 

 

This research makes several methodological contributions to the field: 
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1. Systematic Comparison Framework: Our approach provides a template for rigorous comparison 

between traditional and modern techniques, emphasizing the importance of honest performance 

assessment. 

2. Data Leakage Detection: The five-test framework offers practical tools for identifying and addressing 

temporal contamination in financial machine learning. 

3. Autocorrelation Recognition: Our analysis demonstrates how inherent data characteristics can confound 

validation procedures, providing important context for interpreting machine learning results in finance. 

 

5.4 Limitations 

 

There are a few limitations that should be realized. The stock volatility of individual stocks is the subject of our 

analysis and not the prediction of portfolio or index-level, which may reduce the generalizability. The sample 

period (2013-2018) might not represent the entire range of possible market regimes, but it contains many major 

stress periods. 

 

The machine learning applications, although fixed to prevent the most apparent data leakage, can possibly have 

problems related to subtle temporal contamination that our detection scheme is not able to resolve. The random 

performance of the Random Forest that will not go away is indicative that a refinement of the approach and 

methods might be required. 

 

6. Conclusion 
 

This systematic review offers a number of lessons concerning volatility forecasting studies. GARCH models, and 

especially the GARCH(1,1) using Student-t distribution, have shown excellent results on a wide range of stocks 

with realistic out of sample predictability. The uniformity in the model adequacy and reasonable values of RMSE 

justify the further application of the GARCH frameworks in the prediction of volatility. 

 

The machine learning exploration shows that there are major methodological issues that go beyond data leakage. 

Financial volatility inherently has an autocorrelation structure, which poses inherent challenges in using standard 

machine learning validation methods. We have hinted that machine learning approaches can have theoretical 

benefits, but that their application to financial volatility prediction needs to be handled with caution in light of 

temporal validation challenges. 

 

The framework of systematic data leakage detection developed within the framework of this study offers useful 

tools in future research to ensure that machine learning findings in the field of finance have a sound methodological 

background. The acknowledgement that the problem of cross-validation can be caused by the intrinsic data features 

and not flaws in implementation is a key contribution to the comprehension of the complexity of financial machine 

learning. 

 

To practitioners, our findings confirm that GARCH models should be continued to serve volatility forecasting and 

caution should be exercised to the extreme when using machine learning methods in financial practices. The 

excellence of simple and well-known models over complex algorithms supports the significance of methodological 

rigor as compared to technical sophistication. 

 

To overcome the identified autocorrelation issues of the current study, future research should concentrate on the 

creation of machine learning verification methods tailored to the financial time series to tackle the challenges. 

Also, the potential to find ways of blending the conceptual basis of GARCH models with the adaptability of 

machine learning algorithms can be a fruitful path to new developments in volatility forecasting. 
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