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Abstract: This paper explores the application of knowledge graphs in the reform and exploration of Python programming 

education, using a case study from Nanfang College Guangzhou. The study investigates the impact of knowledge graphs 

on student learning outcomes in a Python programming course, comparing an experimental group (EG) that utilized an 

interactive knowledge graph-based learning tool with a control group (CG) that followed traditional teaching methods. A 

mixed-methods approach was adopted, combining quantitative assessments (pre- and post-course quiz, final exams, and 

practical coding assignments) with qualitative feedback from students through surveys. The results reveal that the EG 

outperformed the CG in all assessment categories, showing a significant increase in quiz scores, final exam performance, 

and practical coding assignments. Specifically, the EG demonstrated a 13% improvement in quiz scores, a 15% increase in 

final exam scores, and an 18% improvement in coding assignments compared to the CG. Statistical analysis confirmed the 

significance of these differences, with p-values below 0.05 for all measures. Qualitative feedback from the EG also 

highlighted the effectiveness of the knowledge graphs in enhancing understanding of abstract programming concepts, 

improving problem-solving skills, and boosting confidence in applying Python programming to real-world problems. These 

findings suggest that knowledge graphs can serve as a powerful teaching tool in programming education, offering students 

a visual and interactive method to comprehend complex relationships between programming concepts. The study highlights 

the potential for integrating KGs into computer science curricula to foster deeper learning, reduce cognitive load, and 

improve student outcomes. Further research is recommended to explore the long-term impact of knowledge graphs on 

programming education and their applicability across different programming languages and educational contexts. 
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1. Introduction 
 

Knowledge Graphs (KGs) are structured representations of knowledge that use nodes and edges to depict 

relationships between entities [1]. In education, knowledge graphs enhance personalized learning by tailoring 

content to individual needs, improve understanding through interconnected topics, streamline information retrieval 

for students and educators[2], support curriculum development by highlighting relationships among concepts, and 

facilitate research by connecting relevant literature[3]. Overall, KGs can significantly enrich the learning 

experience and make education more effective[4]. 

 

The increasing demand for programming skills in various disciplines has led to widespread adoption of Python as 

an introductory language in universities and colleges. Despite its simplicity and versatility, many students struggle 

to grasp complex programming concepts. Traditional teaching methods, relying heavily on textual explanations 

and static examples, often fail to foster deep understanding[5]. This paper introduces the use of knowledge graphs 

as a teaching tool to address this issue, particularly in the context of teaching Python programming. 

 

A knowledge graph is a structured representation of knowledge that illustrates the relationships between concepts. 

By mapping out these relationships, knowledge graphs can provide a more intuitive, visual approach to learning 

[6], making abstract concepts more accessible [7]. This study aims to explore the impact of KGs on student 
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performance in Python programming, comparing the effectiveness of this approach to traditional teaching methods 

through controlled group experiments. 

 

Some of the mainstream knowledge graph tools nowadays include Neo4j [8], a powerful graph database that 

enables efficient knowledge graph construction and querying. Another is Google Knowledge Graph [9], which is 

widely used and integrated into Google’s search service to provide users with more comprehensive and relevant 

information. Additionally, Stardog [10], an open-source triple store, offers features for building and managing 

knowledge graphs. Globe Explorer is also a great tool for Python programming learning. These tools play 

significant roles in various fields such as data analytics, artificial intelligence, and information retrieval 

[11,12,13,14,15,16]. 

 

2. Related Work 
 

Knowledge graphs (KGs) are emerging as a transformative tool in education, enabling a more structured and 

interconnected approach to organizing knowledge. By visualizing the relationships between concepts, KGs offer 

a dynamic representation of information that mirrors how humans naturally understand the world. This visual 

organization allows learners to not only grasp individual facts but also appreciate the broader context and 

interconnections between these facts, thereby fostering deeper learning. 

 

In the context of education, KGs can enhance the learning experience by supporting personalized and adaptive 

learning pathways. As educational systems increasingly incorporate digital tools, KGs are becoming instrumental 

in creating environments where content can be tailored to the specific needs and learning styles of students. For 

instance, in subjects that require an understanding of complex relationships, such as programming or mathematics, 

KGs can be used to visualize dependencies, making abstract concepts more tangible and accessible. 

 

Currently, the role of KGs in education is expected to expand significantly. With advancements in artificial 

intelligence (AI) and machine learning (ML), KGs could become even more integral, enabling intelligent 

educational systems that adapt to the individual learning progress of students. This personalized approach could 

be particularly beneficial for subjects like programming, where understanding the relationships between key 

concepts is crucial for problem-solving and application. 

 

Moreover, KGs have the potential to bridge interdisciplinary learning by providing a unified framework that 

connects knowledge across various domains. This could encourage more holistic learning and foster connections 

between otherwise siloed subjects. The integration of KGs with AI-powered systems is also likely to lead to 

innovations such as real-time feedback mechanisms, where students receive tailored suggestions and resources 

based on their current knowledge and progress. 

 

The use of knowledge graphs in education has received considerable attention in recent years. Researchers have 

shown that KGs can enhance conceptual understanding by visually representing the relationships between different 

concepts. In programming education, KGs have been utilized to represent relationships between programming 

constructs such as loops, conditionals, functions, and classes. 

 

Mathematically, KGs can be modeled as a Directed Acyclic Graph (DAG) where nodes represent concepts and 

edges represent relationships. This formalism allows students to explore and navigate the interconnectedness of 

programming topics. Additionally, KGs reduce cognitive load by providing a visual structure that supports better 

knowledge retention and recall [17]. 

 

In Python programming, KGs can help illustrate how various programming constructs interact, enabling students 

to visualize the flow of control in algorithms or the relationship between data structures and their manipulations. 

Previous studies have shown that using KGs in learning programming leads to improvements in problem-solving 

and conceptual clarity [18]. 

 

3. Methodology 
 

3.1 Experimental Design 
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To assess the impact of knowledge graphs on Python programming education, we conducted a controlled 

experiment with 65 students enrolled in the Python programming course at Nanfang College, Guangzhou. The 

students were randomly assigned to two groups: The Experimental Group (EG) and the Control Group (CG). 

 

Experimental Group (EG): Students in this group were provided with access to a Python knowledge graph, 

which was integrated into the course as an interactive tool. The graph allowed students to explore and interact with 

relationships between Python concepts, such as variables, loops, functions, and object-oriented programming 

principles. 

 
Figure 1: Knowledge Graphs of Python Programming 

 

Control Group (CG): Students in this group followed the traditional curriculum, which relied on lecture-based 

instruction and textbook examples. The control group did not have access to the knowledge graph. 

 

The knowledge graph was constructed based on the key concepts covered in the Python course. The graph 

represented programming constructs as nodes, with edges connecting related concepts. For example, an edge might 

connect a node representing “functions” to a node representing “variables”, indicating that functions typically 

contain variables. This graph was made accessible through a web-based interface, allowing students to interact 

with it dynamically. 

 

3.2 Data Collection 

 

The data collection process involved multiple stages: 

 

• Pre-course Assessment: All students completed a pre-course quiz to assess their baseline knowledge of Python 

programming. The quiz covered basic programming concepts, such as variable declaration, control structures, and 

functions. 

• In-Course Engagement: Throughout the course, students were encouraged to engage with the knowledge 

graph (for the EG) and participate in regular quizzes and coding exercises. The experimental group was instructed 

to refer to the knowledge graph for clarification and to explore programming relationships before and after lectures. 
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• Post-course Assessment: At the end of the course, all students completed a final exam, which included both 

theoretical questions and practical coding assignments. The exam tested their understanding of key Python 

concepts, problem-solving abilities, and the ability to apply concepts to real-world programming tasks. 

• Survey and Feedback: A post-course survey was administered to both groups to gather qualitative data on 

student experiences. Students were asked about their perceived understanding of Python concepts, the usefulness 

of the knowledge graph (for EG), and their overall satisfaction with the course. 

 

3.3 Performance Metrics 

 

To quantify the performance of the two groups, we used the following metrics: 

 

• Quiz Scores (Q): A set of quizzes designed to quiz students’ understanding of key Python concepts. Each quiz 

was scored on a scale of 0 to 100. 

• Final Exam Scores (E): A comprehensive exam that evaluated both theoretical knowledge and practical coding 

skills. The exam consisted of multiple-choice questions, problem-solving tasks, and coding assignments. 

• Practical Coding Assignments (C): Regular coding assignments that required students to implement Python 

programs based on given specifications. The coding assignments were graded based on correctness, efficiency, 

and code clarity. 

 

Each metric was weighted based on its importance in assessing overall student performance. The final performance 

score 𝑃 for each student was calculated using the weighted sum of these metrics: 

𝑃 = 𝑤1 ⋅ 𝑄 + 𝑤2 ⋅ 𝐸 + 𝑤3 ⋅ 𝐶                                                         (1) 

Where 𝑤1, 𝑤2, 𝑤3 are the weights assigned to each metric, based on their importance in assessing programming 

proficiency. For this study, we set 𝑤1 = 0.2, 𝑤2 = 0.4, and 𝑤3 = 0.4, as practical coding skills were considered 

the most critical. 

 

3.4 Statistical Analysis 

 

To evaluate the significance of the observed differences between the groups, we performed a paired t-quiz. The 

null hypothesis 𝐻0 stated that there was no significant difference in performance between the experimental and 

control groups, while the alternative hypothesis 𝐻1 suggested that there was a significant difference. The t-statistic 

was computed as: 

𝑡 =
𝑋EG−𝑋CG

√
𝑠EG
2

𝑛EG
+
𝑠CG
2

𝑛CG

                                                                           (2) 

Where: 

 

• 𝑋EG and 𝑋CG are the mean scores for the experimental and control groups, respectively. 

• 𝑠EG and 𝑠CG are the standard deviations for the experimental and control groups. 

• 𝑛EG and 𝑛CG are the sample sizes for the experimental and control groups. 

 

4. Results and Discussion 
 

4.1 Student Performance: Quantitative Analysis 

 

The performance data for the Experimental Group (EG) and Control Group (CG) were compared across three 

primary assessment categories: quiz scores, final exam scores, and practical coding assignments. The results 

clearly indicate that the integration of knowledge graphs (KGs) into the teaching methodology significantly 

improved the learning outcomes for the EG. 

 

4.1.1 Quiz Scores (Q) 

 

The quiz scores measured students’ grasp of basic Python concepts, including variables, loops, and functions. As 

shown in Table 1, the EG outperformed the CG in both the pre-course and post-course assessments. 
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Table 1: Comparison of Quiz Scores Between Experimental and Control Groups 
Group Pre-Score (%) Post-Score (%) Difference (%) 

Experimental Group (EG) 65 78 +13 

Control Group (CG) 67 72 +5 

 

In the pre-course quiz, both groups had similar scores, indicating comparable levels of understanding at the 

beginning of the course. However, the post-course quiz scores reveal a clear advantage for the EG, who had an 

average improvement of 13% compared to the 5% improvement observed in the CG. This suggests that the use of 

the Knowledge Graph facilitated a deeper understanding and retention of programming concepts. 

A t-quiz conducted on the post-course quiz scores confirmed that the difference between the EG and CG was 

statistically significant (p-value = 0.001), rejecting the null hypothesis of no difference between the two groups. 

 

4.1.2 Final Exam Scores (E) 

 

The final exam consisted of both theoretical questions and practical coding problems. The results for final exam 

scores are shown in Table 2. The EG scored significantly higher than the CG, with an average score of 90% 

compared to 75% for the CG. 

 

Table 2: Comparison of Final Exam Scores Between Experimental and Control Groups 
Group Average Score (%) Difference (%) 

Experimental Group (EG) 90 +15 

Control Group (CG) 75 N/A 

 

This improvement in the EG can be attributed to their better conceptual understanding, facilitated by the use of the 

knowledge graph. The EG’s higher performance was most noticeable in coding assignments, where they 

demonstrated an improved ability to integrate multiple Python constructs, such as functions, loops, and conditional 

statements. 

 

A t-test on final exam scores revealed a statistically significant difference between the EG and CG (p-value = 

0.002), further supporting the effectiveness of the knowledge graph in enhancing student learning outcomes. 

 

4.1.3 Practical Coding Assignments (C) 

 

Practical coding assignments were graded based on correctness, efficiency, and code clarity. As shown in Table 3, 

the EG significantly outperformed the CG in practical coding tasks, scoring an average of 88%, compared to 70% 

for the CG. 

 

Table 3: Comparison of Practical Coding Assignments Scores Between Experimental and Control Groups 
Group Average Score (%) Difference (%) 

Experimental Group (EG) 88 +18 

Control Group (CG) 70 N/A 

 

The EG’s superior performance in coding assignments was particularly evident in tasks requiring students to write 

more complex algorithms, such as sorting and searching algorithms, and tasks requiring debugging. The EG 

students were able to efficiently identify and fix bugs in their code, showcasing their improved understanding of 

how different programming concepts are interconnected. 

 

Statistical analysis using a t-test confirmed that the difference in coding assignment scores between the two groups 

was statistically significant, with a p-value of 0.001. 

 

4.2 Qualitative Data: Survey and Feedback 

 

In addition to the quantitative data, qualitative feedback was gathered from the students through a post-course 

survey. The survey asked students to rate their confidence in understanding Python programming, their overall 

satisfaction with the course, and the usefulness of the knowledge graph (for EG). 

 

4.2.1 Student Confidence 

 



 

 

Liang, J. (2025).  Journal of Theory and Practice in Education and Innovation, 2(1), 22–29. 

 27 

The survey results indicated that the EG reported significantly higher levels of confidence in their Python 

programming skills compared to the CG. As shown in Figure 1, 83% of EG students felt confident or very confident 

in applying Python to solve real-world problems, compared to only 60% of CG students. 

 

 
Figure 2: Student Confidence in Python Programming (Post-Course Survey) 

 

The ability to visualize the relationships between different programming concepts in the knowledge graph seems 

to have helped EG students gain a clearer understanding of how to apply Python in practical scenarios, leading to 

higher self-confidence. 

 

4.2.2 Student Feedback on Knowledge Graph 

 

When asked about the usefulness of the knowledge graph, 90% of EG students rated it as either “very helpful” or 

“helpful”. Many students commented that the knowledge graph allowed them to better understand abstract 

concepts such as recursion, object-oriented programming, and the interactions between functions and variables. 

One student mentioned, “The knowledge graph helped me connect all the Python concepts together, and I no 

longer felt lost when learning something new.” 

 

On the other hand, CG students expressed satisfaction with the traditional lecture-based method but also 

acknowledged that they struggled to see the connections between different programming constructs. One student 

noted, “I learned the individual concepts, but I found it hard to apply them together in real coding tasks.” 

 

4.3 Implications of the Findings 

 

The results from this study provide compelling evidence that integrating knowledge graphs into Python 

programming courses [19] can significantly enhance student learning outcomes. The EG students demonstrated 

superior performance across all assessment metrics, including quizzes, final exams, and practical coding 

assignments. The statistical analysis confirms that the observed differences between the EG and CG were not due 

to chance. 

 

The qualitative feedback further supports these findings, with EG students reporting higher levels of confidence 

in their programming skills and appreciating the ability to visualize the relationships between programming 

concepts. The knowledge graph provided a structured and interactive way for students to explore and reinforce 

their learning [20], which may have helped reduce cognitive load and improved their ability to apply Python 

concepts in real-world scenarios. 

 

4.4 Limitations and Future Work 
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While the results of this study are promising, there are several limitations that should be considered. First, the 

study was conducted at a single institution, and the findings may not be applicable to other institutions or 

educational contexts. Future research could involve a larger sample size and the replication of the study in different 

educational settings. 

Moreover, the current implementation of the knowledge graph was limited to a specific set of Python concepts. 

Further research could explore how to extend the knowledge graph to cover a broader range of programming 

languages and topics, such as data structures, algorithms, and software engineering principles. 

 

Lastly, it would be beneficial to conduct a longitudinal study to examine the long-term impact of knowledge graphs 

[21] on student retention and mastery of programming concepts. This could help determine whether the benefits 

observed in this study are sustained over time. 

 

Potential future applications of knowledge graphs [22] in education: 

 

• Personalized Learning: KGs can model a learner’s existing knowledge and provide personalized 

recommendations to address gaps. 

• Curriculum Design: Educators can leverage KGs to design interconnected curricula that reflect how topics 

relate to each other. 

• Assessment and Feedback: By mapping student learning trajectories, KGs enable more personalized 

assessments and targeted feedback. 

• Collaborative Learning: Shared knowledge graphs can facilitate collaborative exploration and problem-

solving, enhancing peer learning. 

• Integration with AI/ML: Integration with AI/ML: The combination of KGs and AI can lead to intelligent 

tutoring systems that adjust to the learner’s needs. 

 

5. Conclusion 
 

This study demonstrates the positive impact of knowledge graphs on Python programming education. By 

visualizing the relationships between key programming concepts, students can more easily understand abstract 

topics and develop stronger problem-solving skills. The study also introduced the limitations and future work of 

knowledge graphs in the field of education. The results suggest that integrating KGs into programming curricula 

could be an effective strategy for improving student learning outcomes. 
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