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Abstract: In recent years, chatbots powered by Large Language Models (LLMs) have garnered significant attention in the 

field of artificial intelligence. These models are sophisticated natural language processing systems trained using advanced 

deep learning techniques. The development process involves several crucial steps. Initially, the dataset is visualized and 

analyzed to understand its characteristics. This is followed by text preprocessing to clean and prepare the data for training. 

Subsequently, the language for the chatbot is generated and further processed using Deberta v3. Finally, a machine learning 

classifier is employed to distinguish between text generated by the chatbot and natural human language. The evaluation 

results indicate that the model achieves an accuracy of 85%, a precision of 60%, a recall of 62%, and an F1 score of 0.61. 

The high accuracy demonstrates the model's capability to differentiate between chatbot-generated text and natural language. 

However, the precision and recall values, both close to 60%, still suggest a significant degree of ambiguity. This makes it 

relatively easy for chatbot-generated text to be confused with natural human language. 
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1. Introduction 
 

In recent years, chatbots powered by Large Language Models (LLMs) have garnered significant attention in the 

field of artificial intelligence. Models like GPT-3 and BERT are advanced natural language processing systems 

trained using sophisticated learning techniques. These models excel in natural language tasks, demonstrating 

strong capabilities in both language understanding and generation, which has led to their widespread use in text 

generation and interactive systems. 

 

The development and evaluation of LLM-based chatbots involve several key steps. Initially, the dataset is 

visualized and analyzed to understand its characteristics. This is followed by text preprocessing to clean and 

prepare the data for training. Subsequently, the language for the chatbot is generated and further processed using 

models like Deberta v3. Finally, machine learning classifiers are employed to distinguish between text generated 

by the chatbot and natural human language [1-7]. 

 

Evaluation metrics play a crucial role in assessing the performance of these chatbots. Recent studies have shown 

that while LLMs can achieve high accuracy in certain tasks, they still face challenges in open-domain interactions. 

For instance, a study comparing LLMs with human performance in social judgment tasks found that some models 

performed significantly better than humans, while others were on par. This highlights the potential of LLMs to 

provide valuable assistance in various applications, but also underscores the need for continuous improvement to 

handle complex social dynamics. 

 

Comparing LLM-based chatbots with natural language is essential for evaluating their performance in language 

understanding and generation. Such comparisons help refine model design and training strategies, ensuring that 

chatbots can accurately interpret user input and generate contextually appropriate responses. This not only 
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enhances the quality of interaction but also improves user experience. 

 

Moreover, identifying the limitations of LLM-based chatbots, such as ambiguity and difficulties in logical 

reasoning, is crucial for further advancements. These insights can lead to improvements in model architecture and 

algorithms, making chatbots more effective in real-world applications. Additionally, understanding the cognitive 

and emotional aspects of human language through comparison analysis can inform the development of more 

empathetic and personalized chatbot interactions. 

 

In conclusion, the study of LLM-based chatbots and their comparison with natural language not only drives the 

advancement of conversational AI technology but also deepens our understanding of the challenges and 

possibilities in natural language processing. As technology progresses and application scenarios expand, LLM-

based chatbots are poised to play an increasingly important role in the future, becoming an integral part of 

intelligent societies. 

 

2. Data Set 
 

In this paper, we use the open source dataset and summarise the statistics for the various labels of the The data 

used in this paper comes from the open-source dataset, which includes manually written texts as well as AI-

generated texts, where manually written texts are labelled as 0 and AI-generated texts are labelled as As can be 

seen here are 708 texts written by humans and 670 texts generated by AI, with roughly the same number of texts 

for both types [7-13]. 

 

3. Preprocessing of this paper 
 

The deep learning model used in this paper combines different types of layers such as LSTM, Transformer and 

CNN for tasks such as text classification or sequence annotation. The structure of the model is shown in Figure 2 

and the specific parameters are shown in Table 2. 

 
Figure 1: The structure of the model. (Photo credit: Original) 

3.1 Firstly, the input text sequence is transformed into dense vector representations through an embedding layer. 

Subsequently, a Bidirectional Long Short-Term Memory (Bi-LSTM) network is employed to extract sequence 

features. Additionally, a customized TransformerBlock module, which includes a multi-head attention mechanism 

and a feed-forward neural network component, is introduced. The multi-head attention mechanism captures global 

dependencies, while the feed-forward neural network performs feature transformations and non-linear mappings 

[14-18]. 

 

3.2 Enhancing Long-Term Dependencies and Complex Feature Extraction 

 

3.3 In the model architecture, the TransformerBlock is applied to the sequence representation output by the Bi-

LSTM, thereby enhancing the model's ability to capture long-term dependencies. The use of stacked 

TransformerBlocks and residual connections helps mitigate the vanishing gradient problem, enabling the model to 

more effectively capture the complex features of the input sequence. Subsequently, a one-dimensional 
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convolutional block is applied to the output of the TransformerBlock to further extract local features and reduce 

the sequence length. Then, a GlobalMaxPooling1D layer is used to fuse features from different positions into a 

fixed-length vector representation. 

 

3.4 Advanced Feature Learning and Regularization 

 

3.5 To learn more advanced feature representations and prevent overfitting, fully connected (dense) layers and 

Dropout layers are utilized. The final layer is a dense layer with a sigmoid activation function, which outputs the 

probability for the binary classification task. The entire model is constructed using the Functional API, with inputs 

and outputs defined within a model class to form an end-to-end trainable deep learning model [19-25]. 

 

3.6 Integration of Different Neural Network Layers 

 

3.7 To leverage the respective strengths of different neural network layers in processing sequential data, a 

combination of LSTM, Transformer, and CNN layers is used in the dynamic input prompt. The use of residual 

coupling, multi-head attention mechanisms, and convolutional operations enhances the model's modeling and 

generalization capabilities, resulting in excellent performance in text classification tasks [26-31]. 

 

3.8 Bag-of-Words Representation 

 

Converting text data into numeric feature vectors is the basis for machine learning algorithms to process text data. 

One of the simplest and most direct ways to do this is to use a Bag of Words model, which maps each word or 

phrase to a unique index and counts the number or frequency of times each index corresponds to the word's 

occurrence in the document. 

 

3.9 F-IDF Encoding 

 

TF-IDF (Term Frequency-Inverse Document Frequency) encoding is a method commonly used to represent the 

importance of each word in a collection of documents. It takes into account the ratio of the frequency of occurrence 

of a word in the current document to the frequency of occurrence in the entire corpus to better capture key 

information. 

 

4. Method 
 

Deberta v3 is an advanced neural network model in the realm of natural language processing (NLP), specifically 

designed for text generation tasks. It is the latest iteration in the Deberta series, building upon the original Deberta 

model with significant improvements and optimizations to enhance performance and efficiency Figure 2 [32-37]. 

 
Figure 2: The structure of Deberta v3. 

Deberta v3 is based on the Transformer architecture, which is renowned for its powerful capabilities in modeling 

sequential data through multi-layer self-attention mechanisms. This architecture provides robust parallel 

computation and learning capabilities. Deberta v3 introduces several key innovations: 
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These enhancements enable Deberta v3 to excel in large-scale text generation tasks. Its ability to handle long 

sequences and complex dependencies makes it highly effective for applications such as generating coherent and 

contextually relevant text, which is crucial in tasks like document summarization, creative writing, and multi-turn 

dialogues [38-45]. 

 

Compared to traditional models, Deberta v3 demonstrates superior performance in capturing long-range 

dependencies and generating high-quality text. Its innovative approach to attention and decoding sets it apart, 

making it a powerful tool in the NLP toolkit. As research continues to advance, Deberta v3 and similar models are 

expected to play a pivotal role in shaping the future of text generation and NLP applications. 

 

In summary, Deberta v3 leverages the strengths of self-attention mechanisms and the Transformer architecture to 

deliver significant improvements in text generation tasks. Its innovations make it a highly efficient and effective 

model for modern NLP applications [46-55]. 

 

5. Result 
 

This paper presents the implementation of a Token Classification model that leverages the Deberta v3 pre-trained 

model. Initially, the DebertaV3Backbone pre-trained model is employed as the backbone network by loading it. 

Subsequently, a fully connected layer (Dense) and a softmax activation function are appended to the output layer, 

enabling the model's output to be mapped to a specified number of tag categories. During the training process, the 

Adam optimizer is utilized with a learning rate set at 2e-5. The CrossEntropy loss function is employed to calculate 

the model's loss value, while the FBetaScore serves as the evaluation metric. The output results are illustrated in 

Figure 3. 

 
Figure 3: The output results (Photo credit: Original) 

The dataset is preprocessed to remove outliers and missing values, and then the data is divided in the ratio of 6:4, 

40% of the data is used for model testing and 60% of the data is used for model training, and the accuracy is output 

using the test set to output the results of the binary classification, as shown in Table 1. 

Table 1: Modelling assessment. 

 precision recall f1-score support 

acc 0.56 0.57 0.56 129 

good 0 0 0 20 

unacc 0.87 0.97 0.92 397 

vgood 0 0 0 25 

accuracy   0.8 571 

macro avg 0.36 0.38 0.37 571 

weighted avg 0.73 0.8 0.77 571 

 

From the prediction results, it can be seen that the model has a prediction accuracy of 80%, with a precision of 

56%, a recall of 57%, and an f1-score of 0.56, which shows that the machine learning model is still able to 

distinguish chatbots from natural language, achieving an accuracy of 80%, although both the racall and precision 

are close to 50%, which proves that chat bots are easily confused with natural language to some extent [50-60]. 
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6. Conclusion 
 

In recent years, chatbots driven by Large Language Models (LLMs) have garnered significant attention in the field 

of artificial intelligence. These LLMs, trained with advanced learning techniques, are sophisticated natural 

language processing models. Their advanced capabilities in language understanding and generation enable 

chatbots to engage in human-like conversations with users in a natural manner. 

 

In this study, a comprehensive analysis of the dataset was conducted through visualization and detailed 

preprocessing. Subsequently, the language generated by chatbots was processed further using the Deberta v3 

model. Then, a machine learning classifier was employed to distinguish between text generated by chatbots and 

natural language. The results showed that the model achieved a prediction accuracy of 80%, precision of 56%, 

recall of 57%, and an F1 score of 0.56. 

 

These metrics indicate that the machine learning model can distinguish between text generated by chatbots and 

natural language to some extent. However, both precision and recall are close to 50%, with a significant degree of 

confusion between the two. This means that, although the model performs well in many cases, it is still challenging 

to consistently differentiate between content generated by chatbots and authentic human language. 

 

The experimental results demonstrate that the model has made progress in identifying text generated by chatbots 

and natural language. However, the lingering confusion highlights the necessity of further enhancing the 

capabilities of dialogue understanding and generation. When developing and deploying chatbots based on large-

scale language models, it is crucial for the models to focus on improving their ability to distinguish their own 

output from natural human language. 

 

In summary, despite showing promising accuracy in distinguishing between chatbots and natural language, the 

machine learning model still has room for improvement. Continuous enhancement of model performance is 

essential to better meet user needs and ensure higher quality, more reliable interactions in real-world applications. 
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