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Abstract: A real-time turbidity monitoring system was developed to address limitations in traditional methods by 

integrating advanced optical sensors with a machine learning framework. The system incorporates environmental 

parameters such as rainfall, flow velocity, and temperature to enhance predictive accuracy. Field evaluations across five 

diverse sites achieved high performance (R2>0.94) and low errors (MAE as low as 1.4 NTU), with real-time processing 

latency averaging 48 milliseconds. The results demonstrated the system’s adaptability to site-specific conditions, effectively 

capturing turbidity variability driven by rainfall-induced sediment mobilization and flow velocity. These findings highlight 

the system's potential for deployment in regulatory compliance, flood risk management, and industrial monitoring 

applications. Future efforts will focus on expanding calibration datasets and addressing sensor drift to enhance scalability 

and robustness for long-term environmental monitoring.  
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1. Introduction 
 

Monitoring water quality is essential for maintaining environmental sustainability and public health, as it informs 

strategies to mitigate pollution and safeguard aquatic ecosystems. Among the various water quality parameters, 

turbidity—a measure of water clarity—holds significant importance as it directly reflects the concentration of 

suspended particles and sediments in water. However, traditional turbidity monitoring methods, such as single-

angle optical systems, often struggle to provide accurate measurements in complex and dynamic environments. 

These methods are particularly susceptible to sensor drift, noise from environmental factors, and delays in 

processing, which limit their effectiveness for real-time or large-scale monitoring applications (Ateia et al., 2024; 

Zhu et al., 2024). 

 

Over the past decade, efforts to improve water quality monitoring have increasingly focused on combining sensor 

technology with data-driven methods, particularly machine learning (Zhang et al., 2024; Liu et al., 2024). For 

instance, Pandya et al. (2024) demonstrated that ML models could improve turbidity prediction accuracy under 

controlled conditions. While their approach was promising, it relied heavily on cloud-based processing, leading to 

latency issues and limiting its feasibility for field applications. Similarly, Chen et al. (2023) developed a hybrid 

ML framework that integrated physical models with data-driven techniques, achieving reliable results in laboratory 

tests but encountering scalability challenges in real-world settings. Beyond algorithmic advances, hardware 

innovations have also contributed to this field. Hanson et al. (2023) introduced high-sensitivity multi-angle optical 

sensors capable of capturing more nuanced turbidity measurements, particularly in low-turbidity environments. 

However, frequent recalibration and environmental drift remained significant barriers to deploying these sensors 

in dynamic or remote settings. Li et al. (2022) designed an embedded monitoring device emphasizing energy 
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efficiency and portability, but the device lacked the computational power to integrate ML-based predictive 

capabilities. In another study, Masarova et al. (2024) implemented convolutional neural networks (CNNs) to detect 

turbidity anomalies, achieving strong predictive accuracy. Despite these advancements, deploying CNNs on 

embedded platforms with real-time constraints remains an unresolved challenge. The limitations of current systems 

underscore the need for a solution that not only achieves high detection accuracy but also operates effectively in 

dynamic, real-world environments. Existing research often prioritizes either accuracy or scalability, leaving gaps 

in real-time processing, robustness across diverse environmental conditions, and integration of contextual 

parameters such as rainfall and hydrodynamic variability (Lin et al., 2024; Zhou et al., 2024; Yao et al., 2024; 

Chen et al., 2024). 

 

This study addresses these challenges by developing an integrated water quality monitoring system that combines 

advanced multi-angle optical sensors with machine learning algorithms for real-time turbidity detection. The 

system incorporates a convolutional neural network optimized for low-latency inference and multi-dimensional 

inputs, including auxiliary environmental factors such as rainfall, flow velocity, and tidal phases. It was field-

tested across diverse sites, ranging from urban rivers and agricultural streams to industrial effluent outlets and 

coastal estuaries, capturing both routine and extreme turbidity events. Results demonstrate that the system achieves 

a 28.7% improvement in prediction accuracy compared to conventional methods, with an average latency of 48 

milliseconds, validating its suitability for dynamic, real-world applications. 

 

By bridging gaps in sensor technology, machine learning integration, and real-time environmental monitoring, this 

study provides a practical framework for addressing the growing need for accurate and scalable water quality 

management. Its innovations are not only relevant for scientific research but also hold significant potential for 

industrial and environmental applications, contributing to long-term sustainability efforts. 

 

2. Materials and Methods 
 

2.1 System Architecture 

 

The water quality monitoring system was designed as an embedded platform integrating advanced optical sensors, 

machine learning algorithms, and a real-time processing unit. The architecture includes a multi-angle optical sensor 

module for turbidity measurement, a System-on-Chip (SoC) for machine learning inference and data preprocessing, 

and a communication module for wireless data transfer using Bluetooth Low Energy (BLE) and Wi-Fi (Lian et al., 

2024; Sun et al., 2024; Ren, 2024; Shen 2024). The system prioritizes low latency, high accuracy, and adaptability 

for dynamic environmental conditions, making it suitable for urban, industrial, and natural water systems. 

 

2.2 Sensor Technology 

 

The optical sensor module uses a light scattering principle with multi-angle detection to enhance turbidity accuracy. 

The relationship between scattered light intensity (Is) and turbidity (T) is modeled as: 

 𝑰𝒔(𝜽) = ∑ [𝒌𝒊 ⋅ 𝑻
𝜶𝒊 + 𝜷𝒊 ⋅ 𝐥 𝐧(𝑻 + 𝝐)]𝒏

𝒊=𝟏  (1) 

where 𝒌𝒊, 𝜶𝒊, and are coefficients specific to the detection angle 𝜽, and accounts for noise. Sensors were calibrated 

using formazin solutions ranging from 0 to 1500 NTU. Noise reduction was implemented with adaptive filtering 

to account for environmental variability, such as debris or algae interference. 

 

2.3 Machine Learning Model 

 

The machine learning model is a convolutional neural network (CNN) designed to process multi-dimensional input 

data, including sensor readings and environmental parameters (Li et al., 2024; Lian et al., 2023). The network 

architecture features three convolutional layers with kernel sizes of 3×3 and 5×5, two max-pooling layers, and two 

fully connected layers. 

 

The prediction equation is expressed as: 

 𝑇pred = 𝜎(𝑊1 ⋅ 𝑋sensor + 𝑏1) + 𝜓(𝑊2 ⋅ 𝑋aux + 𝑏2) (2) 

where Xsensor represents sensor data, Xaux represents auxiliary inputs such as rainfall or temperature, W1 and W2 

are weights, b1 and b2 are biases, and σ(.) and ψ(.) are activation functions. The training process incorporated a 
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custom loss function to optimize both accuracy and temporal consistency: 

 ℒ =
1

𝑁
∑ (𝑇pred,𝑖 − 𝑇true,𝑖)

2𝑁
𝑖=1 + 𝜆∑ |

𝜕𝑇pred,𝑖

𝜕𝑡
−

𝜕𝑇true,𝑖

𝜕𝑡
|𝑁

𝑖=2  (3) 

Here, λ is a regularization parameter, and ∂T represents the temporal gradient of turbidity. 

 

2.4 Dataset Preparation 

The dataset consisted of 8,950 samples collected from five sites over a six-month period. Sampling intervals ranged 

from 30 minutes during stable conditions to 5 minutes during high variability events such as rainfall or industrial 

discharges. The dataset dimensions included turbidity (NTU), temperature (℃), pH, dissolved oxygen (mg/L), 

flow velocity (m/s), rainfall (mm/day), and tidal phase for coastal sites. Sites included: 

 

1) Urban River (Site A): Moderate turbidity due to urban runoff, with 2,100 samples collected. 

2) Agricultural Stream (Site B): Highly variable turbidity from soil erosion, with 1,750 samples. 

3) Industrial Effluent (Site C): High turbidity fluctuations due to discharge cycles, contributing 2,300 samples. 

4) Mountain Lake (Site D): Clear water with sporadic turbidity increases, adding 1,200 samples. 

5) Coastal Estuary (Site E): Dynamic turbidity driven by tides, with 1,600 samples. 

 

The dataset was divided into training (70%), validation (15%), and testing (15%) subsets, ensuring sufficient data 

for model evaluation. 

 

2.5 Real-Time Data Processing Framework 

 

The real-time processing pipeline integrates data acquisition, preprocessing, prediction, and anomaly detection. 

Sensor readings are collected continuously and preprocessed using median filtering and normalization. The CNN 

predicts turbidity in real time, with anomaly detection thresholds dynamically adjusted based on historical trends. 

The system achieves an average latency of 48 milliseconds, making it suitable for dynamic monitoring applications. 

 

2.6 Experimental Setup 

 

The system was deployed at five monitoring sites for six months, with manual spot-check measurements conducted 

weekly for validation. The setup included sensors installed in situ with protective housings to minimize fouling 

and interference. Field tests were designed to capture both routine variations and extreme events, such as heavy 

rainfall at Site B and industrial surges at Site C. Data was transmitted to a central server for analysis, with periodic 

calibration performed to ensure sensor accuracy. 

 

Statistical Analysis 

 

Performance metrics included the Mean Absolute Error (MAE), calculated as: 

 MAE =
1

𝑁
∑ |𝑇pred,𝑖 − 𝑇true,𝑖|
𝑁
𝑖=1  (4) 

and the Root Mean Squared Error (RMSE): 

 RMSE = √
1

𝑁
∑ (𝑇pred,𝑖 − 𝑇true,𝑖)

2𝑁
𝑖=1  (5) 

Paired t-tests compared the CNN-based predictions with traditional turbidity meters, with significance set at 

p<0.05. Analysis of variance (ANOVA) was performed to assess the impact of environmental factors on prediction 

accuracy. Computational efficiency was evaluated by measuring inference time across varying input sizes, 

ensuring the system met real-time performance requirements. These evaluations confirmed the system’s robustness 

and reliability across diverse scenarios. 

 

3. Results and Discussion 
 

3.1 Prediction Accuracy Across Sites 

 

The turbidity prediction system exhibited strong performance across all monitoring sites, achieving correlation 

coefficients (R2) between 0.94 and 0.98 (Table 1). Sites with relatively stable environmental conditions, such as 
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Site D (Mountain Lake), demonstrated the lowest prediction errors (MAE = 1.4 NTU, RMSE = 1.8 NTU). In 

contrast, Site E (Coastal Estuary) presented the greatest challenges, with errors reaching MAE = 2.8 NTU and 

RMSE = 3.4 NTU, primarily due to tidal sediment resuspension and complex hydrodynamic forces. 

 

 

 

Table 1: Summary of Key Metrics Across Monitoring Sites 

Site 

Mean 

Turbidity 

(NTU) 

Rainfall 

Contributi

on (%) 

Flow Velocity 

Contribution 

(%) 

Industrial 

Discharge 

Contribution (%) 

R² for 

Predict

ion 

MAE 

(NTU) 

Model 

Robustness 

Score 

Site A 12.3 34.5 25.3 0 0.97 1.8 92 

Site B 25.6 40.2 30.1 5.3 0.96 2.1 88 

Site C 40.2 25.7 35.6 20.7 0.95 2.5 85 

Site D 8.5 20.3 28.9 0 0.98 1.4 94 

Site E 30.8 50.1 20.8 10.4 0.94 2.8 87 

 

As shown in Figure 1, the predicted values closely aligned with the true turbidity measurements across all sites. 

The clustering of data points along the 1:1 line highlights the model’s robustness, even under variable conditions 

such as those at Site B (Agricultural Stream), where turbidity is heavily influenced by seasonal runoff. Despite 

occasional deviations, the model's overall accuracy validates its adaptability to diverse water systems. 

 
Figure 1: Predicted vs. True Turbidity Across All Sites 

(The relationship between the predicted and true turbidity values for all monitoring sites, with linear regression 

fits and corresponding R2 values.) 

3.2 Environmental Drivers of Turbidity Variability 

Rainfall and flow velocity were identified as the dominant factors influencing turbidity, with rainfall contributing 
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up to 50.1% of variability at Site E and flow velocity accounting for 35.6% at Site C. These findings underscore 

the critical role of auxiliary parameters in turbidity dynamics. For instance, rainfall’s impact at Site E is consistent 

with the estuary’s susceptibility to sediment inflow during storm events, while flow velocity’s influence at Site C 

aligns with its hydrodynamically active industrial effluent environment. 

 

The strong correlation between rainfall and flow velocity observed in Figure 2 (R2=0.88) further emphasizes the 

interconnected nature of these factors. The system’s ability to capture such relationships demonstrates the 

advantage of integrating multi-dimensional data into the predictive framework. Without these auxiliary inputs, 

traditional models often fail to account for the complexity of sediment mobilization in dynamic water systems. 

 
Figure 2: Correlation Between Rainfall Intensity and Flow Velocity 

(The correlation between rainfall intensity and flow velocity across all sites, highlighting the interconnected 

impact on turbidity dynamics.) 

3.3 Temporal Dynamics and Training-Validation Behavior 

 

The training and validation loss curves in Figure 3 demonstrate smooth convergence across all sites, with minimal 

divergence between training and validation losses. This suggests that the model generalizes well, avoiding 

overfitting despite the high-dimensional input data. The incorporation of temporal gradient penalties in the loss 

function proved critical in enabling the model to capture short-term turbidity variations, particularly during rapid 

changes such as those at Site B during heavy rainfall events. The system’s ability to adapt to temporal dynamics 

highlights its suitability for deployment in environments where turbidity fluctuations are driven by episodic events, 

such as storm runoff or industrial discharge peaks. 
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Figure 3: Model Training and Validation Loss Over Epochs 

(This line plot compares the training and validation loss curves for the model over 20 epochs, demonstrating 

smooth convergence and minimal overfitting.) 

3.4 System Scalability and Real-Time Performance 

 

The system’s low latency, averaging 48 ms, ensures its applicability for real-time water quality monitoring. This 

capability is especially important for applications requiring immediate feedback, such as regulatory compliance at 

industrial sites or flood risk assessments in agricultural regions. The robustness of the system across diverse 

conditions, as reflected by the robustness scores of 85–94, further supports its potential for long-term deployment 

in variable environments. 

 

Notably, the system’s ability to process multi-dimensional inputs without compromising speed or accuracy 

addresses a critical limitation of traditional turbidity monitoring approaches. By integrating sensor data with 

auxiliary parameters, the system bridges the gap between high-resolution monitoring and real-time operational 

decision-making. 

 

3.5 Broader Implications and Practical Significance 

 

This study demonstrates the feasibility of leveraging machine learning to enhance turbidity monitoring capabilities. 

By integrating rainfall, flow velocity, and temperature into its predictive framework, the system provides a nuanced 

understanding of turbidity variability that traditional models fail to capture. For example, at Site C, the model 

successfully accounted for flow-driven sediment resuspension, providing valuable insights for managing industrial 

discharge impacts. 

 

The system's adaptability to site-specific conditions, such as rainfall-driven variability at Site E and hydrodynamic 

effects at Site B, highlights its practical relevance for diverse water management scenarios. These findings have 

direct implications for improving the accuracy and scalability of turbidity monitoring systems, particularly in 

regions where environmental variability poses significant challenges. 

 

4. Conclusion 
 

This study developed a real-time turbidity monitoring system that integrates advanced sensor technologies with 
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machine learning to address limitations in traditional methods. By incorporating environmental parameters such 

as rainfall and flow velocity, the system achieved high predictive accuracy (R2>0.94) and low latency (48 ms) 

across diverse monitoring sites. The findings demonstrate its scalability and adaptability to dynamic water systems, 

highlighting its potential for regulatory compliance, flood management, and industrial monitoring applications. 

While the system performed robustly, future improvements should focus on expanding calibration datasets, 

addressing sensor drift, and incorporating additional water quality parameters. These enhancements will further 

solidify its applicability for long-term and large-scale monitoring, contributing to sustainable water resource 

management and environmental protection. 
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