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Abstract: The study focuses on improving the safety and interpretability of reinforcement learning in autonomous driving 

under uncertain traffic conditions. A decision-making model is developed using the Soft Actor-Critic algorithm, with an 

added module to estimate uncertainty and detect risky situations in real time. To make the system’s behavior more 

understandable, a state–action salience mapping is designed to show which inputs have the greatest effect on each decision. 

The model is tested in simulation environments involving sudden pedestrian crossings, lane changes by other vehicles, and 

complex traffic flows. Results show that the method reduces the accident rate by 23.5% compared with standard approaches, 

while also making it easier for users to follow the reasoning behind the system’s actions. These findings suggest that 

combining risk detection with simple visual explanation tools can help reinforcement learning models perform more reliably 

and transparently in real-world traffic. 
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1. Introduction 
 

In the current era of rapid technological progress, continuous innovations in artificial intelligence (AI) and sensor 

technologies have laid a solid foundation for the steady transition of autonomous driving from theoretical research 

to practical application [1]. According to data from the Society of Automotive Engineers (SAE), by the end of 

2024, more than 5 million vehicles equipped with various levels of autonomous driving capabilities had been 

deployed globally and this number is increasing at an annual rate of approximately 30% [2]. Many technology 

enterprises and automobile manufacturers have actively engaged in the development of autonomous driving 

technologies [3]. The industry has evolved from early-stage driver assistance functions, such as Adaptive Cruise 

Control (ACC) and Automatic Parking, toward highly automated and even fully autonomous systems [4]. The 

future of autonomous driving is promising, with the potential to significantly improve traffic efficiency and 

alleviate urban congestion. Relevant studies show that in large cities experiencing severe traffic congestion, the 

implementation of high-level autonomous driving could increase roadway throughput by 20%–30%, potentially 

reducing annual economic losses caused by traffic delays by several hundred billion yuan [5]. At the same time, 

autonomous driving could dramatically reduce traffic accidents caused by human error, offering unprecedented 

convenience and safety for public travel [6]. Data indicate that approximately 1.35 million people die in traffic 

accidents globally each year, with more than 90% of these accidents attributed to human-related factors [7]. If 

autonomous driving systems can reliably replace human drivers, they could generate profound and positive societal 

impacts. 

 

However, real-world traffic environments are highly complex and uncertain. Participants include motor vehicles, 
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non-motorized vehicles and pedestrians, all exhibiting highly diverse and random behavioral patterns [8]. 

According to investigations by traffic behavior research institutions, in urban road environments, about 50 out of 

every 1,000 vehicles display irregular driving behaviors each day, such as sudden lane changes or emergency 

braking [9]. In certain congested areas, up to 20% of non-motorized vehicles illegally move between motor vehicle 

and bicycle lanes. In some older city districts, the rate of pedestrian violations—such as crossing against red lights 

or not using designated crosswalks—can reach 15%. Road infrastructure also varies across cities and regions [10]. 

There are narrow and winding alleyways as well as complex multi-level traffic interchanges. Additionally, 

differences in traffic sign placement and lane markings further increase the difficulty of autonomous system 

decision-making. Environmental conditions are also subject to frequent changes [11]. There are considerable 

differences in lighting between day and night and weather variations—such as sunny, rainy, or snowy conditions—

affect visibility and road surface friction [12]. For example, on rainy days, road friction can decrease by 30%–40% 

compared to dry conditions, posing a serious challenge to the perception and decision-making capabilities of 

autonomous systems [13]. 

 

Traditional rule-based autonomous driving approaches feature relatively clear logical structures and can function 

effectively in simple and well-structured traffic scenarios [14]. For example, on highways with low vehicle density 

and clearly marked lanes, such systems can maintain safe following distances and comply with speed limits based 

on predefined rules [15]. However, when confronted with the complexity and variability of real-world traffic 

environments, their limitations become evident. Rules are inherently limited in scope and cannot comprehensively 

address all possible situations. When encountering rare or unexpected events, the system often struggles to make 

reasonable decisions, leading to ineffective or incorrect responses. Studies have shown that in complex urban 

traffic environments, rule-based autonomous systems exhibit decision failure rates as high as 40% when dealing 

with abnormal conditions. The emergence of data-driven techniques such as deep learning and reinforcement 

learning has injected new vitality into the field of autonomous driving. Deep learning, with its strong feature 

extraction capabilities, enables large-scale analysis and learning of traffic scene data, leading to significant 

progress in the perception layer [16]. It allows more accurate detection of traffic signs, vehicles, and pedestrians. 

Under ideal conditions, traffic sign recognition based on deep learning can achieve accuracy rates above 95%. 

Reinforcement learning, by contrast, allows an agent to learn optimal behavior through trial-and-error interactions 

with the environment to maximize long-term cumulative rewards [17]. Theoretically, this provides a feasible 

solution for autonomous systems to adapt to dynamic and complex traffic conditions. However, both deep learning 

and reinforcement learning are essentially black-box models. The internal structure of deep learning models—

comprising intricate parameter settings and multi-layered networks—makes it difficult to interpret their decision-

making processes [18]. As a result, the reasoning behind decisions in specific scenarios is often unclear. 

Reinforcement learning also faces challenges under uncertain conditions. It is sensitive to environmental noise, 

reward design, and other external factors, which can lead to instability during training and unreliable decisions. 

Research has shown that in simulated complex traffic scenarios, the decision reliability of reinforcement learning 

alone is only about 60%. 

 

Safety is the fundamental prerequisite for the widespread application of autonomous driving technology [19]. Any 

minor safety risk can lead to serious accidents in real-world traffic, resulting in significant loss of life and property. 

Statistical data indicate that traffic-related injuries and fatalities remain high each year, with human error 

accounting for a substantial proportion [20]. If autonomous systems can safely and reliably replace human drivers, 

the potential social benefits would be considerable and far-reaching. At the same time, interpretability is equally 

critical for the large-scale adoption of autonomous driving. From the user's perspective, people are often hesitant 

to trust their safety to a system whose decision logic they cannot comprehend. Only when users can clearly 

understand the basis for system decisions—especially in key situations such as emergency braking or evasive 

maneuvers—can trust in the system be truly established. From a regulatory standpoint, interpretability is essential 

for authorities to understand the system’s decision-making processes, enabling the development of rational and 

effective policies to guide and supervise technological deployment. Furthermore, during system development and 

testing, interpretability assists researchers in pinpointing issues efficiently, refining algorithms, and improving 

overall system performance. In recent years, reinforcement learning has been widely applied in the field of 

autonomous driving decision-making. Many studies have attempted to use reinforcement learning algorithms to 

train autonomous vehicles to generate decision strategies under different traffic scenarios, such as navigating 

intersections or driving through roundabouts. However, as discussed earlier, reinforcement learning has inherent 

limitations in handling uncertainty. Bayesian methods, as a powerful tool for dealing with uncertainty, provide 

probabilistic modeling of model parameters. This allows for quantitative analysis of uncertainty and offers more 

reliable support for prediction outcomes. In autonomous driving systems, Bayesian approaches can be used to 

model the uncertainty in sensor data, thereby enabling more accurate perception of the surrounding environment 
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[21]. Meanwhile, with the continued development of research in interpretable artificial intelligence, a series of 

interpretability techniques have emerged. These include attention-based visualization methods and inherently 

interpretable models such as decision trees. Incorporating such techniques into reinforcement learning is expected 

to enhance the transparency of the decision-making strategies, making them easier to understand and verify. 

 

Based on the above research background, this paper proposes a strategy generation framework that combines 

Bayesian uncertainty modeling with an explainable reinforcement learning mechanism. The goal is to 

comprehensively enhance the safety and interpretability of autonomous driving systems under uncertain traffic 

scenarios. By conducting detailed analysis and precise modeling of complex traffic situations, reinforcement 

learning is used to train efficient decision strategies suitable for different contexts. Bayesian methods are applied 

to quantitatively assess uncertainty, and interpretable models are designed to clearly reveal the decision-making 

basis. This integrated approach aims to realize safe, transparent, and reliable autonomous driving decisions, 

thereby addressing key technical bottlenecks in practical deployment. 

 

2. Methods 
 

2.1 Reinforcement Learning Framework Integrated with Bayesian Uncertainty Modeling 

 

This study adopts the Soft Actor-Critic (SAC) algorithm to construct the fundamental reinforcement learning 

framework. In autonomous driving scenarios, the policy network 𝜋𝜃(𝑎|𝑠) outputs an action 𝑎 based on the current 

state 𝑠, where 𝜃 denotes the parameters of the policy. Two value networks, 𝑄𝜙1
(𝑠, 𝑎) and 𝑄𝜙2

(𝑠, 𝑎), are used to 

evaluate the value of the state–action pair, with 𝜙1 and 𝜙2 representing their respective parameters. 

 

The network parameters are updated by optimizing the following loss functions: 

 𝐿𝜃 = 𝔼𝑠∼𝒟,𝑎∼𝜋𝜃
[log 𝜋𝜃 (𝑎|𝑠) − 𝛼𝑄min(𝑠, 𝑎)]  

 𝐿𝜙𝑖
= 𝔼𝑠∼𝒟,𝑎∼𝜋𝜃

[(𝑄𝜙𝑖
(𝑠, 𝑎) − (𝑟(𝑠, 𝑎) + 𝛾𝔼𝑠′∼𝒫[𝑉𝜓(𝑠′)]))

2], (𝑖 = 1,2)  

 𝐿𝜓 = 𝔼𝑠∼𝒟[(𝑉𝜓(𝑠) − 𝔼𝑎∼𝜋𝜃
[𝑄min(𝑠, 𝑎) − 𝛼 log 𝜋𝜃 (𝑎|𝑠)])

2]  

Here, 𝒟 represents the experience replay buffer, r(s,a) is the immediate reward, 𝛾 is the discount factor, and 𝛼 is 

the coefficient used to balance the reward and entropy terms. The function 𝑄min(𝑠, 𝑎) =
min{𝑄𝜙1

(𝑠, 𝑎), 𝑄𝜙2
(𝑠, 𝑎)} is used to compute the minimum of the two value estimates. The state value function 

is denoted as 𝑉𝜓(𝑠), where 𝜓 denotes its parameters. In addition, Bayesian methods are used to model the policy 

network parameters 𝜃, which are assumed to follow a prior distribution 𝑝(𝜃). After observing the dataset 𝒟, the 

posterior distribution is calculated according to Bayes’ theorem:  

 𝑝(𝜃|𝒟) =
𝑝(𝒟|𝜃)𝑝(𝜃)

∫𝑝(𝒟|𝜃)𝑝(𝜃)𝑑𝜃
  

Since computing the exact posterior distribution is intractable, variational inference is adopted to approximate it. 

A variational distribution 𝑞𝜙(𝜃) is introduced to approximate the true posterior by minimizing the Kullback–

Leibler divergence 𝐷𝐾𝐿(𝑞𝜙(𝜃)||𝑝(𝜃|𝒟)) [22]. This is achieved by optimizing the evidence lower bound (ELBO):  

 ℒ(𝜙) = 𝔼𝑞𝜙(𝜃)
[log 𝑝 (𝒟|𝜃)] − 𝐷𝐾𝐿(𝑞𝜙(𝜃)||𝑝(𝜃))  

The parameter 𝜙 is updated accordingly. In practical implementation, Monte Carlo sampling is performed to draw 

parameter samples 𝑞𝜙(𝜃) from the variational distribution 𝜃𝑖. These samples are then used to generate different 

policies for evaluating uncertainty. 

 

2.2 Confidence Evaluation Module for Identifying High-Risk States 

 

To accurately determine high-risk states, a confidence evaluation module is designed. Given a state 𝑠, 𝑁 parameter 

samples {𝜃1, 𝜃2, ⋯ , 𝜃𝑁} are drawn from the variational distribution 𝑞𝜙(𝜃) . Based on these samples, a 

corresponding action set {𝑎1, 𝑎2, ⋯ , 𝑎𝑁} is generated, where each action 𝑎𝑖 ∼ 𝜋𝜃𝑖(𝑎|𝑠). The confidence level is 

quantified by calculating the action variance 𝜎2(𝑠) as follows:  

 𝜎2(𝑠) =
1

𝑁−1
∑ (𝑁
𝑖=1 𝑎𝑖 − 𝑎)2  
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Here, 𝑎 =
1

𝑁
∑ 𝑎𝑖
𝑁
𝑖=1  A larger variance indicates a higher level of uncertainty and risk. When the confidence level 

is lower than a predefined threshold 𝜏 , the state is identified as a high-risk state, and corresponding safety 

measures—such as deceleration or evasive actions—are taken. 

 

2.3 Design of the State–Action Salience Mapping Model 

 

To improve the interpretability of the policy, a state–action salience mapping model is designed. Based on the 

gradient backpropagation algorithm, the gradient of the action with respect to the state is calculated 𝛻𝑠𝑎. For each 

state dimension 𝑠𝑗, the salience score 𝑆(𝑠𝑗) is defined as: 

 𝑆(𝑠𝑗) = |
𝜕𝑎

𝜕𝑠𝑗
|  

The salience scores for all state dimensions are normalized to clarify the relative importance of each dimension. 

These normalized values are then projected onto the original state space to generate salience maps. Such maps 

visually highlight the key factors influencing decision-making under different states, and help users better 

understand the rationale behind the decisions. 

 

3. Results and Discussion 
 

3.1 Experimental Setup 

 

This study conducts experiments using the CARLA autonomous driving simulation platform. 

 

CARLA provides a highly realistic urban traffic environment that includes a wide range of road types, various 

traffic participants and dynamically changing environmental factors [23]. In the simulation environment, several 

complex and uncertain traffic scenarios are carefully designed. These include irregular pedestrian crossings, 

vehicle cut-ins and mixed traffic flows involving cars, motorcycles, and bicycles. To simulate different weather 

and lighting conditions, the environment is configured with diverse settings to better reflect real-world traffic 

situations. To rigorously verify the performance improvements of the proposed method in uncertain traffic 

scenarios—including safety, interpretability and driving efficiency—we systematically select several 

representative baseline algorithms. These algorithms include traditional rule-based methods and classical 

reinforcement learning approaches, both of which are widely used. This selection enables a comprehensive 

assessment of the proposed method’s features and advantages from multiple perspectives, as summarized in Table 

1. 

Table 1: Characteristics of the Comparison Algorithms 

Algorithm Decision Basis Advantages Limitations 

Traditional 

Rule-Based 

Method 

Based on predefined driving 

rules, such as maintaining safe 

distance and following traffic 

signals 

Can maintain basic driving 

order in regular and 

structured scenarios 

Difficult to cover all traffic 

situations; high decision 

error rate in special cases 

Plain SAC 

Algorithm 

Soft Actor-Critic algorithm 

without additional 

mechanisms; outputs actions 

based on the current state 

Serves as a fundamental 

reinforcement learning 

algorithm with general 

applicability 

Lacks capability in 

handling uncertainty and 

providing interpretability 

Deep Q-

Network 

(DQN) Method 

Selects optimal actions by 

learning state–action value 

functions 

A classical reinforcement 

learning method with 

practical applications in 

some scenarios 

Shows limited decision 

reliability in complex 

environments 

 

To accurately evaluate the performance of different algorithms in autonomous driving scenarios, a set of 

comprehensive and targeted evaluation metrics is adopted. Accident Rate, This metric is calculated by dividing 

the number of collisions or similar incidents by the total number of simulation scenarios. It directly reflects the 

safety level of the autonomous driving system. As a core evaluation metric, it is closely related to the protection 

of life and property. Average Driving Speed, This refers to the average speed of the vehicle throughout the entire 

driving process. It is used to measure the system’s driving efficiency under the condition of ensuring safety. 

Balancing safety and efficiency is a key factor in the real-world application of autonomous driving [24]. 
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Interpretability Score, this score is determined by manually evaluating the clarity and comprehensibility of the 

state–action salience mapping visualizations. A scoring system ranging from 0 to 10 is used, where a higher score 

indicates stronger interpretability. Interpretability is crucial for enhancing user trust, facilitating regulatory 

oversight, and supporting system debugging. 

 

3.2 Safety Comparison 

 

The method proposed in this study, which integrates Bayesian uncertainty modeling and an explainable 

reinforcement learning mechanism (hereafter referred to as the proposed method), exhibits significantly lower 

accident rates than all baseline algorithms across all predefined scenarios [25]. Specifically, in the irregular 

pedestrian crossing scenario, the accident rate of the proposed method is 5.5%, whereas the rate reaches 28% for 

the traditional rule-based method, 18% for the plain SAC algorithm, and 22% for the DQN method. In the vehicle 

cut-in scenario and the mixed traffic flow scenario, the proposed method also demonstrates excellent performance, 

with accident rates reduced to 7% and 9%, respectively, representing clear improvements over the other algorithms. 

Across all scenarios, the proposed method achieves a 23.5% reduction in accident rate compared to the traditional 

rule-based method, a 10.5% reduction compared to the plain SAC algorithm, and a 13.5% reduction compared to 

the DQN method. These results clearly demonstrate that the proposed method, by introducing Bayesian uncertainty 

modeling, can more accurately assess risks in traffic environments and adopt safer decision strategies, thereby 

effectively reducing the occurrence of accidents [26]. 

Table 2: Average Driving Speeds of Different Algorithms 

Traffic Scenario 
Proposed 

Method 
Traditional Rule-Based 

Method 
Plain SAC 

Algorithm 
DQN 

Method 

Irregular Pedestrian 

Crossing 
32 km/h 34 km/h 33 km/h 28 km/h 

Vehicle Cut-in 33 km/h 35 km/h 34 km/h 30 km/h 

Mixed Traffic Flow 35 km/h 38 km/h 36 km/h 30 km/h 

 

The data in the table clearly indicate that the proposed method ensures high safety without a significant loss in 

driving efficiency. In various traffic scenarios, the average driving speed of the proposed method is close to that 

of the plain SAC algorithm, slightly lower than that of the traditional rule-based method, but significantly higher 

than that of the DQN method [27,28]. This confirms that the proposed method can maintain a relatively high level 

of driving efficiency while addressing uncertainty and ensuring safety, demonstrating strong practical application 

value. 

 

The comparison of interpretability scores shows that the proposed method achieves a score of 8, which is 

significantly higher than the other baseline algorithms. The traditional rule-based method, due to its relatively 

simple and direct decision-making rules, receives a score of 4. The plain SAC algorithm and the DQN method, 

limited by their black-box model characteristics, perform poorly in interpretability, scoring 3 and 2, respectively. 

By employing the state–action salience mapping model, the proposed method is able to clearly present the decision 

basis of the autonomous driving system under different states. This allows users to intuitively understand how 

decisions are made, significantly enhancing the interpretability of the system. This improvement in interpretability 

is of great importance for increasing user trust, facilitating system debugging, and supporting algorithm 

optimization. From the perspective of user acceptance, high interpretability enables users to better understand how 

autonomous vehicles behave in various situations, reducing fear and uncertainty toward opaque decisions and 

thereby increasing their willingness to adopt autonomous driving technologies [29]. During the system debugging 

process, developers can use the salience maps to quickly locate the cause of abnormal decisions, enabling precise 

tuning of algorithm parameters and improving overall system performance. For regulatory authorities, a 

transparent decision logic makes it easier to formulate reasonable regulatory standards and policies, thereby 

promoting the orderly development of autonomous driving technologies [30,31]. Compared with the traditional 

rule-based method, the proposed method not only provides explanations for standard decisions, but also offers 

insights into the rationale behind decisions in complex scenarios, overcoming the limitations of single-scenario 

applicability in traditional approaches. In contrast to black-box models such as SAC and DQN, the proposed 

method transforms obscure and hard-to-interpret decision processes into visual and understandable forms [32]. 

This compensates for the lack of transparency in black-box models and provides a solid foundation for the 

widespread application of autonomous driving systems in complex real-world environments. 

 

3.3 Discussion 
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Based on the experimental results, the proposed reinforcement learning framework that integrates Bayesian 

uncertainty modeling achieves clear and effective outcomes. The framework effectively handles uncertainty in 

traffic scenarios by identifying high-risk states through the confidence evaluation module and taking timely 

countermeasures [33]. This significantly enhances the safety of the autonomous driving system. In complex traffic 

environments, the proposed method shows a notable reduction in accident rates compared with traditional methods 

and other reinforcement learning algorithms, providing a more reliable safety guarantee for practical applications. 

At the same time, under the condition of ensuring safety, the method maintains a good balance in driving efficiency. 

Although the average driving speed in some scenarios is slightly lower than that of the traditional rule-based 

method, it is close to that of the plain reinforcement learning algorithms, indicating strong overall performance. In 

addition, the state–action salience mapping model provides a direct explanation of the decision-making process. 

The high interpretability score demonstrates its effectiveness, which contributes to improving user acceptance and 

trust, and facilitates system optimization and adjustment. However, the framework still has certain limitations. In 

terms of computational resources, Bayesian uncertainty modeling and repeated Monte Carlo sampling impose 

relatively high requirements on computing performance, which limits its application in low-end in-vehicle systems 

[34]. Moreover, in extremely complex combinations of traffic scenarios, the clarity of interpretation provided by 

the current state–action salience mapping model may be reduced. It is necessary to further optimize the model 

structure and algorithm to improve robustness and scalability. Future research can focus on optimizing the 

algorithmic process to reduce computational cost and on exploring more efficient uncertainty quantification 

methods and interpretability techniques [35,36]. This will help autonomous driving systems achieve a better 

balance among safety, interpretability and computational efficiency and promote their transition toward practical 

large-scale deployment. 

 

4. Conclusion 
 

This study explores a reinforcement learning framework that combines Bayesian-based uncertainty modeling with 

an interpretable decision mechanism, aiming to improve the safety and transparency of autonomous driving 

systems in complex and uncertain traffic environments. Through probabilistic analysis, the proposed approach 

estimates uncertainty in decision-making and identifies high-risk traffic states, allowing the system to take 

appropriate safety actions. In parallel, the designed state–action salience mapping enhances interpretability by 

visually illustrating the decision rationale in a structured and explainable manner. Experiments conducted in the 

CARLA simulation environment show that the proposed method reduces the frequency of accidents compared to 

both traditional rule-based systems and conventional reinforcement learning algorithms. While there is a marginal 

reduction in average driving speed relative to the rule-based baseline, the method maintains stable performance 

and ensures consistent safety benefits. In terms of interpretability, the visual clarity provided by the salience 

mapping contributes meaningfully to user understanding and supports debugging and system refinement efforts. 

Nevertheless, the method’s reliance on Bayesian inference and repeated sampling increases the computational 

burden, which may limit deployment on low-power hardware platforms. In addition, under highly entangled or 

edge-case traffic scenarios, the effectiveness of visual interpretability may decrease, indicating room for structural 

optimization. In summary, the proposed method offers a feasible route toward safer and more interpretable 

autonomous driving decisions. Future research may focus on improving computational efficiency and refining 

interpretability under extreme conditions to facilitate real-world implementation at scale. 
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