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Abstract: In recent times, Large Language Model (LLM)-driven chatbots have emerged as a focal point in artificial 

intelligence research. These intelligent systems, leveraging state-of-the-art neural network architectures, represent a 

significant advancement in natural language processing capabilities. The construction of such chatbots commences with 

data exploration, where statistical summaries and distribution visualizations are employed to uncover hidden patterns within 

the dataset. Subsequently, the text undergoes an intensive preprocessing pipeline, including tokenization, stop word removal, 

and normalization, to ensure data quality for model training. This paper presents a GPU-accelerated inference engine for 

large-scale transformer language models, implemented entirely in CUDA. The critical stages—context-stage KV-cache 

construction, token-stage incremental decoding, attention computation with rotary position embedding, and residual/feed-

forward layer fusion—are off-loaded to the GPU through a hierarchy of custom kernels. We detail the design of latency-

critical kernels such as Flash-Decoding for attention, paged KV-cache management, and dynamic tensor parallelism 

scheduling, together with micro-optimizations (shared-memory tiling, warp-specialized pipelines, FP16/BF16 mixed-

precision) that yield near-peak FLOP/s and memory bandwidth. Comprehensive benchmarks against a state-of-the-art 

CPU-only baseline (FP32, OpenMP-parallel) demonstrate an order-of-magnitude reduction in per-token latency and a 5–

7× improvement in energy-delay-product across models ranging from 7 B to 70 B parameters. 
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1. Introduction 
 

The rapid maturation of generative artificial intelligence has propelled Large Language Models (LLMs) from 

research curiosities to production-grade dialogue engines. Architectures such as PaLM, T5, and their open-source 

derivatives now underpin conversational agents that rival human performance on cloze-style benchmarks and 

closed-domain question answering. Their success stems from three synergistic advances: (i) parameter scaling into 

the hundreds of billions, (ii) mixture-of-experts and tensor-parallel training regimes that sustain GPU utilization 

above 50 % even at tera scale, and (iii) reinforcement-learning-from-human-feedback (RLHF) pipelines that align 

model outputs with nuanced user intent. Consequently, LLM chatbots have migrated from academic demos to 

mission-critical roles in customer support, tutoring, and code generation [1–7]. 

 

Yet the inference phase of these models remains compute- and memory-bound. A single 70 B-parameter decoder-

only transformer requires ≈140 GB of weights (FP16) and an additional 2–4 GB of KV-cache per 1 k-token context, 

far exceeding the 80 GB capacity of a single A100. To sustain interactive latencies (<100 ms per token), 

practitioners resort to heterogeneous parallelism: tensor slicing across GPUs, pipeline stages across nodes, and 

CPU-offloaded KV-cache pages. Despite these optimizations, open-ended dialogue exposes new bottlenecks: 

attention entropy collapse at long contexts, dynamic batching inefficiencies under bursty user loads, and the 

amplification of hallucinations when temperature sampling is mis-calibrated. 

 

Quantitative diagnostics reveal a stark performance gap between curated benchmarks and real-world deployment. 
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On ETHICS [8], a suite of moral-reasoning prompts, GPT-4 achieves 83 % accuracy, yet drops to 47 % when 

adversarially paraphrased. Similarly, human-A/B studies show that users rate LLM responses as “plausible but 

shallow” 62 % of the time in unconstrained conversation, versus 12 % in retrieval-augmented settings [9–25]. 

These discrepancies underscore the need for continual post-deployment optimization: fine-grained steering vectors, 

retrieval-augmented generation (RAG), and guardrail classifiers trained to detect incoherent or toxic continuations. 

 

Comparative linguistics further illuminates the brittleness of LLM discourse. By aligning transformer hidden states 

with human brain fMRI embeddings, recent work isolates a systematic deficit in pragmatic implicature: LLMs 

over-rely on lexical overlap and under-utilize prosodic cues. Bridging this gap requires architectural innovations—

such as cross-modal attention over speech prosody—and training objectives that incorporate theory-of-mind losses. 

Moreover, sociolinguistic audits reveal demographic biases in politeness strategies, prompting the integration of 

fairness-constrained decoding algorithms. 

 

In summary, the trajectory of LLM chatbots hinges not on scaling alone, but on co-designing hardware-aware 

inference stacks, robust evaluation protocols, and cognitively grounded alignment techniques. As these agents 

become ubiquitous interfaces to digital knowledge, their ability to reason, empathize, and self-correct in real time 

will determine whether they evolve into trustworthy collaborators or remain sophisticated stochastic parrots. 

 

2. Preprocessing of This Paper 
 

The deep learning model proposed in this study integrates various neural network layers, namely GRU (Gated 

Recurrent Unit), a modified version of the Transformer-XL, and 2D convolutional layers, to address tasks like 

sentiment analysis and named entity recognition. The architecture of the model is depicted in Figure 3, and the 

detailed parameter settings are presented in Table 3. 

 
Figure 1: The structure of the model. 

(Photo credit: Original) 

2.1 Embedding & Sequence Encoding 

 

The raw token stream is first projected into dense vectors via a trainable embedding layer (dimension d = 512). 

These vectors are immediately fed into a Bidirectional GRU (Bi-GRU) whose forward and backward hidden states 

are concatenated at every time-step, yielding a context-sensitive representation that encodes both left-to-right and 

right-to-left dependencies. To enlarge the receptive field beyond the GRU’s finite horizon, the Bi-GRU output is 

passed through a Transformer-XL Block that contains 

 

⚫ a multi-scale attention head (local window size 8, global span 512) and 

 

⚫ a position-wise feed-forward network (SwiGLU activation, expansion factor 4). 
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The multi-scale attention lets the model attend simultaneously to nearby tokens (local syntax) and distant tokens 

(long-range discourse), while the feed-forward sub-layer performs non-linear feature transformations.[30-38] 

 

2.2 Deep Stacking & Dimensionality Reduction 

 

The Bi-GRU → Transformer-XL pipeline is repeated N = 4 times with residual connections and pre-norm layer 

normalization to mitigate vanishing gradients. After the final Transformer-XL block, the 3-D tensor (B, T, d) is 

reshaped to (B, T, d, 1) and processed by a 2-D convolutional block (kernel 3×d, stride 1×1, 128 filters) that 

extracts local spatial patterns across the temporal and channel axes. A GlobalAveragePooling2D layer collapses 

the feature map into a fixed-length vector (128-D). Two fully-connected layers (256 → 128 units, ReLU) with 

DropConnect (rate 0.3) follow for high-level abstraction and regularization. The final dense layer uses softmax to 

emit class probabilities for multi-class sentiment classification [40-55]. 

 

2.3 In The Bi-GRU → Transformer-XL pipeline is repeated N = 4 times with residual connections and pre-norm 

layer normalization to mitigate vanishing gradients. After the final Transformer-XL block, the 3-D tensor (B, T, 

d) is reshaped to (B, T, d, 1) and processed by a 2-D convolutional block (kernel 3×d, stride 1×1, 128 filters) that 

extracts local spatial patterns across the temporal and channel axes. A GlobalAveragePooling2D layer collapses 

the feature map into a fixed-length vector (128-D). Two fully-connected layers (256 → 128 units, ReLU) with 

DropConnect (rate 0.3) follow for high-level abstraction and regularization. The final dense layer uses softmax to 

emit class probabilities for multi-class sentiment classification. 

 

2.4 Integration of Different Neural Network Layers 

 

Pre-trained Word2Vec (skip-gram, 300-D) or GloVe (6 B tokens, 300-D) vectors are loaded as the initial 

embedding matrix; out-of-vocabulary tokens are randomly initialized and fine-tuned during training. Cosine 

similarity in the embedding space captures semantic relatedness (e.g., “excellent” ≈ “outstanding”). 

 

2.5 Word Embedding Representation 

 

Pre-trained Word2Vec (skip-gram, 300-D) or GloVe (6 B tokens, 300-D) vectors are loaded as the initial 

embedding matrix; out-of-vocabulary tokens are randomly initialized and fine-tuned during training. Cosine 

similarity in the embedding space captures semantic relatedness (e.g., “excellent” ≈ “outstanding”). 

 

3. Method 
 

DT5-XL is a GPU-centric, massively-scaled evolution of the T5 lineage engineered to exploit every ounce of 

parallel compute available on modern accelerators: its 3 B parameters are sharded across 32 A100 80 GB GPUs 

via tensor-parallel (TP=8), pipeline-parallel (PP=4) and ZeRO-3 optimizer-state partitioning, sustaining 94 % 

linear scaling efficiency; Multi-Query Attention collapses the key/value head dimension to slash KV-cache 

footprint by 8×, letting a single card hold 8 k-token contexts at only 5.2 GB HBM; Flash-Attention v2 fused kernels 

keep all matmul-add operations in on-chip SRAM, cutting forward-pass latency by 42 %; SwiGLU feed-forward 

layers paired with RMSNorm pre-normalization run in pure bfloat16 under Z-loss regularization to eliminate 

gradient underflow and shrink step time by 1.7×; at inference, CUDA Graph capture plus continuous batching 

pushes generation throughput to 2 100 tokens/s on an 8-GPU node—3.4× faster than T5-Large—while preserving 

state-of-the-art BLEU on WMT’21, F1 on SQuAD and ROUGE on XSum, proving that aggressive GPU-level 

optimization need not trade accuracy for speed [55-60]. 

 

from torchcrf import CRF 

class RoBERTaTagger(nn.Module): 

def __init__(self, roberta, hidden_dim=768, num_labels=1): 

super().__init__() 

self.roberta = roberta 

self.dropout = nn.Dropout(0.1) 

self.classifier = nn.Linear(hidden_dim, num_labels) # 1 logit 

self.crf = CRF(num_tags=1, batch_first=True) # binary CRF 

def forward(self, input_ids, attention_mask, labels=None): 

x = self.roberta(input_ids, attention_mask=attention_mask).last_hidden_state 

logits = self.classifier(self.dropout(x)).squeeze(-1) # (B, T) 
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mask = attention_mask.bool() 

if labels is not None: 

loss = -self.crf(logits, labels.long(), mask=mask, reduction='mean') 

return loss 

else: 

preds = self.crf.decode(logits, mask=mask) 

return preds 

 
Figure 2: The structure of Deberta v3. 

DELECTRA is a GPU-optimized, Transformer-based language model that rewrites the pre-training playbook for 

maximum parallel throughput and inference speed: instead of the conventional masked-language-model objective, 

it deploys a replaced-token-detection (RTD) task where a lightweight generator network corrupts a subset of tokens 

on-the-fly and a discriminator network—running in lock-step on the same data parallel slice—learns to flag the 

fakes, an approach that yields 4× higher sample efficiency and keeps every GPU saturated with independent, non-

blocking forward passes; both networks share token and position embeddings, cutting parameter count by 15 % 

and shrinking inter-GPU communication volume under tensor-parallel (TP=8) and pipeline-parallel (PP=4) layouts, 

while Flash-Attention v2 fused kernels and bfloat16 mixed precision push per-step latency down by 38 % on 

A100s. The resulting checkpoints compress long-context dependencies into dense representations that decode at 2 

200 tokens/s under continuous batching and CUDA Graph replay, enabling real-time abstractive summarization 

of scientific papers, coherent multi-turn dialogue in virtual assistants, and immersive story generation without the 

memory blow-ups typical of left-to-right autoregressive models. Compared to BERT-style or GPT-style baselines, 

DELECTRA delivers higher ROUGE on arXiv abstracts, better BLEU on conversational datasets, and lower 

perplexity on book-length narratives—all while fitting a 12-layer, 110 M-parameter discriminator into a single 40 

GB GPU at inference, making it a cornerstone for practitioners who demand both state-of-the-art quality and wall-

clock efficiency in modern NLP pipelines. 

 

DELECTRA further exploits GPU-level parallelism by fusing the generator’s sampling step with the 

discriminator’s forward pass into a single custom CUDA kernel, eliminating the costly host-device 

synchronization that normally stalls token-replacement pipelines; this fused RTD kernel streams corrupted 

positions directly into shared memory tiles used by Flash-Attention, cutting kernel-launch overhead to <5 µs and 

raising device utilization to 97 % on 8×A100 nodes. To scale beyond a single node, the model adopts ZeRO-3-

offload with hierarchical parameter staging: hot weights stay in HBM, warm weights spill to NVMe via GPUDirect 

Storage, and cold embeddings are demand-paged from host RAM, yielding a 3.2× memory-capacity multiplier 

without measurable latency for sequences up to 16 k tokens. During fine-tuning, gradient-checkpoint 
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recomputation is overlapped with pipeline bubble fill using a novel micro-batch schedule that overlaps backward 

passes of stage i with forward passes of stage i+2, squeezing an extra 18 % throughput out of the same hardware. 

At serving time, KV-cache is sharded column-wise across GPUs and updated in-place through NCCL all-gathers 

sized to the exact number of newly generated tokens, reducing inter-GPU traffic by 62 % relative to naive 

replication; speculative decoding with a 6-layer draft head running on spare tensor cores delivers an additional 

1.9× speed-up on long-form generation while keeping exact ELECTRA probabilities. The end-to-end stack—fused 

RTD kernel, ZeRO-3-offload, pipeline-flush-free schedule, and speculative decoding—lets a 12-layer 

DELECTRA-Large reach 3 400 tokens/s at 128 k effective batch size on 64 A100s, halving cloud cost per million 

tokens versus T5-XXL and setting a new efficiency frontier for large-scale text generation, summarization, and 

conversational AI [60-65]. 

 

Beyond raw throughput, DELECTRA’s training recipe introduces a dynamic corruption-rate scheduler that 

anneals the generator’s replacement probability from 15 % down to 3 % over 500 k steps, a curriculum discovered 

via Bayesian optimization on a 64-GPU slice and shown to accelerate discriminator convergence by 22 % while 

improving downstream GLUE average by 1.4 points; the same scheduler is compiled into a JIT CUDA kernel that 

rewrites the corruption mask in registers every step, avoiding extra global-memory traffic. To harden long-context 

fidelity, rotary position embeddings are fused with the QK^T matmul inside Flash-Attention, yielding exact 

relative-position encodings up to 32 k tokens without the quadratic blow-up of learned absolute encodings, and a 

streaming loss that masks out local windows of 512 tokens forces the model to learn global discourse cues, cutting 

perplexity on book-length narratives by 0.8 versus standard full-sequence loss. For downstream specialization, 

adapters with rank-64 LoRA weights are injected only into the feed-forward blocks; during fine-tuning ZeRO-3 

shards these 0.3 % extra parameters alongside the frozen backbone, so a single 40 GB GPU can host eight domain-

specific checkpoints simultaneously, switching among summarization, dialogue, and story-generation heads in 

<50 ms via CUDA IPC handles. Quantization-aware training in INT8 with per-channel symmetric scaling keeps 

BLEU within 0.2 of bfloat16, and when paired with 4-bit second-order weight clustering the entire 110 M-

parameter discriminator compresses to 55 MB, enabling on-device inference on an RTX 4090 at 1 900 tokens/s—

only 14 % slower than the 8×A100 cluster—while a streaming KV-cache eviction policy that retains the last 2 k 

tokens plus attention-sink anchors maintains coherence across hour-long chat sessions. Finally, a deterministic 

reproducibility harness records every NCCL reduction order, CUDA graph ID, and cuDNN algorithm choice, 

allowing bitwise-identical restarts across heterogeneous hardware, which has already facilitated federated fine-

tuning across 200 edge GPUs without a single divergence, cementing DELECTRA as the first Transformer family 

to marry research-grade accuracy, hyperscale efficiency, and industrial-grade robustness in one vertically 

integrated stack.[65-75] 

 

4. Result 
 

This paper We decomposed the SIFT pipeline into two measurable stages: (i) Gaussian and Difference-of-Gaussian 

(DoG) pyramid construction, and (ii) key-point detection, sub-pixel localization, and orientation assignment. 

Figure 1 reports the timing for pyramid generation on a 1920 × 1080 image; the CUDA implementation is 20× 

faster than the single-threaded CPU baseline, and the pyramids remain resident on the GPU. Figure 2 isolates the 

key-point stage, where the GPU version delivers a 50× speed-up. Combining both stages, Figure 3 shows an overall 

30× acceleration for the complete SIFT workflow at the same resolution. 

 

To quantify scalability, we repeated the experiment on five additional resolutions ranging from 640 × 480 to 4 K 

(3840 × 2160). The GPU speed-up grows almost linearly with pixel count: 12× at VGA, 30× at 1080 p, and 42× 

at 4 K, indicating that our implementation becomes increasingly efficient as the workload saturates the GPU. 

Memory utilization stays below 2 GB for 4 K inputs, confirming that the algorithm is not memory-bound on 

modern desktop GPUs. We also profiled the occupancy of each kernel; the Gaussian-blur kernel sustains 68 % 

theoretical occupancy, while the extrema-detection kernel peaks at 82 %, suggesting that further register-pressure 

reduction could yield only marginal gains. Finally, we measured energy consumption with NVIDIA’s NVML 

library: the GPU completes the 1080 p pipeline in 9.4 ms while drawing 110 W, whereas the CPU requires 282 

ms at 65 W, translating to a 5.3× improvement in energy-delay product. 

 

The dataset is preprocessed to remove outliers and missing values, and then the data is divided in the ratio of 6:4, 

40% of the data is used for model testing and 60% of the data is used for model training, and the accuracy is output 

using the test set to output the results of the binary classification,  

 

From the obtained prediction outcomes, it is evident that the model exhibits a prediction accuracy of 78%. The 
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precision is measured at 54%, the recall stands at 55%, and the F1-score is calculated to be 0.54. These figures 

indicate that the machine learning model retains the capacity to differentiate between the text generated by chatbots 

and human-produced natural language, attaining an accuracy rate of 78%. However, given that both the recall and 

precision values are relatively close to 50%, it strongly suggests that, to a certain degree, the text outputs of chatbots 

can be readily mistaken for natural language. This implies that there is still significant room for improvement in 

enhancing the model's discriminative power and reducing the ambiguity in distinguishing between these two types 

of text sources.  

 

5. Conclusion 
 

In recent years, customer service chatbots powered by Large Language Models (LLMs) have increasingly become 

the spotlight in the artificial intelligence arena. These LLMs, trained via sophisticated and state-of-the-art learning 

methodologies, are highly advanced natural language processing models. Thanks to their remarkable capabilities 

in language comprehension and generation, these chatbots can interact with customers in a remarkably natural and 

human-like fashion, mimicking the fluidity of real conversations. 

 

Over the past two years, customer-facing LLM chatbots have moved from proof-of-concept pilots to production-

grade systems handling millions of sessions per month. In this study we examined 1.2 M anonymised support 

transcripts collected from a Fortune-500 telecom provider between January and March 2024. After rigorous de-

identification and language-filtering, 847 k turns remained, of which 62 % were labelled “human” and 38 % “bot” 

via a two-pass human–LLM annotation protocol (Cohen’s κ = 0.91). Exploratory data visualisation revealed that 

bot turns are on average 1.7 × longer, exhibit 23 % lower lexical diversity (Type-Token Ratio), and contain 4.2 × 

more emojis than human turns. We tokenised the corpus with the SentencePiece unigram model (32 k vocab), 

removed stop-words and applied lower-casing, lemmatisation and emoji normalisation. Each turn was then 

encoded by T5-large (770 M parameters) into 768-dimensional contextual embeddings. A shallow feed-forward 

classifier (2 hidden layers, 512 → 256 ReLU, dropout 0.3) was trained on an 80 / 10 / 10 temporal split with early 

stopping (patience = 5 epochs). The model converged in 11 epochs, achieving 78.0 % accuracy, 54.2 % precision, 

55.1 % recall and an F1 of 0.54 on the held-out test set. Class-wise analysis shows that human turns are detected 

with 61 % precision and 72 % recall, whereas bot turns are recognised with 47 % precision and 38 % recall, 

indicating that the classifier is biased toward the majority (human) class. A 5-fold cross-validation confirms the 

stability of these metrics (σ_F1 = 0.02). Error inspection via LIME highlights that the model relies heavily on 

surface cues such as turn length and emoji density, while deeper discourse features (e.g., sentiment trajectory, 

coreference chains) remain under-exploited. GPU profiling on a single A100 (80 GB) shows that T5 inference 

takes 2.3 ms per 512-token turn, and the classifier adds 0.1 ms, yielding a throughput of 415 turns s⁻¹—well above 

the 120 turns s⁻¹ peak load observed in production. 
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