Integrating Statistical Models and Deep Learning for Advanced Medical Image Analysis

Authors

  • Johannes Mülle Finance, London School of Economics, LSE, London
  • Bianchi Mateo Economics, Metropolitan State University of New York
  • Francesca Bianchi International Trade and Finance, Vienna University of Economics and Business, WU Wien

Keywords:

Medical Image Analysis, Deep Learning, Object Detection, Statistical Models

Abstract

Recent advancements in computer vision and deep learning have profoundly impacted medical image analysis, particularly in tasks such as classification, segmentation, and object detection. Traditional methods reliant on hand-crafted features have given way to deep convolutional neural networks (CNNs), which autonomously learn intricate image representations, enhancing accuracy and efficiency in interpreting medical images (Elyan et al., 2022). Integrating statistical models of shape and appearance with CNN architectures has further bolstered diagnostic capabilities, offering robust frameworks to characterize anatomical structures and variations across diverse patient datasets. Despite these strides, challenges persist in deploying these technologies within clinical settings, including data heterogeneity and model interpretability. This paper critically reviews the integration of statistical models and deep learning in medical image analysis, identifies key challenges, and proposes future research directions to foster the adoption of intelligent computer vision systems in healthcare.

References

Wu, Y., Jin, Z., Shi, C., Liang, P., & Zhan, T. (2024). Research on the Application of Deep Learning-based BERT Model in Sentiment Analysis. arXiv preprint arXiv:2403.08217.

Lu, W., Ni, C., Wang, H., Wu, J., & Zhang, C. (2024). Machine Learning-Based Automatic Fault Diagnosis Method for Operating Systems.

Zhong, Y., Cheng, Q., Qin, L., Xu, J., & Wang, H. (2024). Hybrid Deep Learning for AI-Based Financial Time Series Prediction. Journal of Economic Theory and Business Management, 1(2), 27-35.

Wang, J., Xin, Q., Liu, Y., Wang, J., & Yang, T. (2024). Predicting Enterprise Marketing Decision Making with Intelligent Data-Driven Approaches. Journal of Industrial Engineering and Applied Science, 2(3), 12-19.

Wang, B., Lei, H., Shui, Z., Chen, Z., & Yang, P. (2024). Current State of Autonomous Driving Applications Based on Distributed Perception and Decision-Making.

Zhang, Y., Xie, H., Zhuang, S., & Zhan, X. (2024). Image Processing and Optimization Using Deep Learning-Based Generative Adversarial Networks (GANs). Journal of Artificial Intelligence General science (JAIGS) ISSN: 3006-4023, 5(1), 50-62.

Guo, L., Li, Z., Qian, K., Ding, W., & Chen, Z. (2024). Bank Credit Risk Early Warning Model Based on Machine Learning Decision Trees. Journal of Economic Theory and Business Management, 1(3), 24-30.

Jiang, W., Qian, K., Fan, C., Ding, W., & Li, Z. (2024). Applications of generative AI-based financial robot advisors as investment consultants. Applied and Computational Engineering, 67, 28-33.

Fan, C., Li, Z., Ding, W., Zhou, H., & Qian, K. Integrating Artificial Intelligence with SLAM Technology for Robotic Navigation and Localization in Unknown Environments.

Zhang, Y., Abdullah, S., Ullah, I., & Ghani, F. (2024). A new approach to neural network via double hierarchy linguistic information: Application in robot selection. Engineering Applications of Artificial Intelligence, 129, 107581.

Li, Zihan, et al. "Robot Navigation and Map Construction Based on SLAM Technology." (2024).

Fan, C., Ding, W., Qian, K., Tan, H., & Li, Z. (2024). Cueing Flight Object Trajectory and Safety Prediction Based on SLAM Technology. Journal of Theory and Practice of Engineering Science, 4(05), 1-8.

Ding, W., Tan, H., Zhou, H., Li, Z., & Fan, C. Immediate Traffic Flow Monitoring and Management Based on Multimodal Data in Cloud Computing.

Xin, Q., Song, R., Wang, Z., Xu, Z., & Zhao, F. (2024). Enhancing Bank Credit Risk Management Using the C5. 0 Decision Tree Algorithm. Journal Environmental Sciences And Technology, 3(1), 960-967.

Sun, Y., Cui, Y., Hu, J., & Jia, W. (2018). Relation classification using coarse and fine-grained networks with SDP supervised key words selection. In Knowledge Science, Engineering and Management: 11th International Conference, KSEM 2018, Changchun, China, August 17–19, 2018, Proceedings, Part I 11 (pp. 514-522). Springer International Publishing.

Shi, Y., Yuan, J., Yang, P., Wang, Y., & Chen, Z. Implementing Intelligent Predictive Models for Patient Disease Risk in Cloud Data Warehousing.

Zhan, T., Shi, C., Shi, Y., Li, H., & Lin, Y. (2024). Optimization Techniques for Sentiment Analysis Based on LLM (GPT-3). arXiv preprint arXiv:2405.09770.

Lin, Y., Li, A., Li, H., Shi, Y., & Zhan, X. (2024). GPU-Optimized Image Processing and Generation Based on Deep Learning and Computer Vision. Journal of Artificial Intelligence General science (JAIGS) ISSN: 3006-4023, 5(1), 39-49.

Sun, Y. (2024). TransTARec: Time-Adaptive Translating Embedding Model for Next POI Recommendation. arXiv preprint arXiv:2404.07096.

Chen, Zhou, et al. "Application of Cloud-Driven Intelligent Medical Imaging Analysis in Disease Detection." Journal of Theory and Practice of Engineering Science 4.05 (2024): 64-71.

Yang, T., Xin, Q., Zhan, X., Zhuang, S., & Li, H. (2024). ENHANCING FINANCIAL SERVICES THROUGH BIG DATA AND AI-DRIVEN CUSTOMER INSIGHTS AND RISK ANALYSIS. Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (online), 3(3), 53-62.

Zheng, H., Wu, J., Song, R., Guo, L., & Xu, Z. (2024). Predicting Financial Enterprise Stocks and Economic Data Trends Using Machine Learning Time Series Analysis.

Bai, X., Zhuang, S., Xie, H., & Guo, L. (2024). Leveraging Generative Artificial Intelligence for Financial Market Trading Data Management and Prediction.

Zhan, X., Ling, Z., Xu, Z., Guo, L., & Zhuang, S. (2024). Driving Efficiency and Risk Management in Finance through AI and RPA. Unique Endeavor in Business & Social Sciences, 3(1), 189-197.

Yu, D., Xie, Y., An, W., Li, Z., & Yao, Y. (2023, December). Joint Coordinate Regression and Association For Multi-Person Pose Estimation, A Pure Neural Network Approach. In Proceedings of the 5th ACM International Conference on Multimedia in Asia (pp. 1-8).

He, Z., Shen, X., Zhou, Y., & Wang, Y. (2024, January). Application of K-means clustering based on artificial intelligence in gene statistics of biological information engineering. In Proceedings of the 2024 4th International Conference on Bioinformatics and Intelligent Computing (pp. 468-473).

Tian, J., Li, H., Qi, Y., Wang, X., & Feng, Y. (2024). Intelligent medical detection and diagnosis assisted by deep learning. Applied and Computational Engineering, 64, 121-126.

Yang, P., Chen, Z., Su, G., Lei, H., & Wang, B. (2024). Enhancing traffic flow monitoring with machine learning integration on cloud data warehousing. Applied and Computational Engineering, 67, 15-21.

Sha, X. (2024). Research on financial fraud algorithm based on federal learning and big data technology. arXiv preprint arXiv:2405.03992.

Tianqi, Y. (2022). Integrated models for rocking of offshore wind turbine structures. American Journal of Interdisciplinary Research in Engineering and Sciences, 9(1), 13-24.

Xin, Q., Xu, Z., Guo, L., Zhao, F., & Wu, B. (2024). IoT Traffic Classification and Anomaly Detection Method based on Deep Autoencoders.

Yuan, B., & Song, T. (2023, November). Structural Resilience and Connectivity of the IPv6 Internet: An AS-level Topology Examination. In Proceedings of the 4th International Conference on Artificial Intelligence and Computer Engineering (pp. 853-856).

Haowei, Ma, et al. "CRISPR/Cas-based nanobiosensors: A reinforced approach for specific and sensitive recognition of mycotoxins." Food Bioscience 56 (2023): 103110.

Yang, T., Li, A., Xu, J., Su, G., & Wang, J. (2024). Deep Learning Model-Driven Financial Risk Prediction and Analysis.

Xu, Z., Guo, L., Zhou, S., Song, R., & Niu, K. (2024). Enterprise Supply Chain Risk Management and Decision Support Driven by Large Language Models. Applied Science and Engineering Journal for Advanced Research, 3(4), 1-7.

Song, R., Wang, Z., Guo, L., Zhao, F., & Xu, Z. (2024). Deep Belief Networks (DBN) for Financial Time Series Analysis and Market Trends Prediction.

Yuan, B., Song, T., & Yao, J. (2024, January). Identification of important nodes in the information propagation network based on the artificial intelligence method. In 2024 4th International Conference on Consumer Electronics and Computer Engineering (ICCECE) (pp. 11-14). IEEE.

Xu, X., Xu, Z., Ling, Z., Jin, Z., & Du, S. (2024). Emerging Synergies Between Large Language Models and Machine Learning in Ecommerce Recommendations. arXiv preprint arXiv:2403.02760.

Guo, L., Song, R., Wu, J., Xu, Z., & Zhao, F. (2024). Integrating a Machine Learning-Driven Fraud Detection System Based on a Risk Management Framework.

Zhan, X., Shi, C., Li, L., Xu, K., & Zheng, H. (2024). Aspect category sentiment analysis based on multiple attention mechanisms and pre-trained models. Applied and Computational Engineering, 71, 21-26.

Wu, B., Xu, J., Zhang, Y., Liu, B., Gong, Y., & Huang, J. (2024). Integration of computer networks and artificial neural networks for an AI-based network operator. arXiv preprint arXiv:2407.01541.

Yuan, B. (2024). Design of an Intelligent Dialogue System Based on Natural Language Processing. Journal of Theory and Practice of Engineering Science, 4(01), 72-78.

Xu, J., Wu, B., Huang, J., Gong, Y., Zhang, Y., & Liu, B. (2024). Practical applications of advanced cloud services and generative AI systems in medical image analysis. Applied and Computational Engineering, 64, 82-87.

Downloads

Published

2024-06-30

How to Cite

Mülle, J., Mateo, B., & Bianchi, F. (2024). Integrating Statistical Models and Deep Learning for Advanced Medical Image Analysis. Journal of Theory and Practice in Engineering and Technology, 1(1), 17–24. Retrieved from https://woodyinternational.com/index.php/jtpet/article/view/23